

Réf. : CG/SDP/ES/N°16 -306

Ed/Rév : 01/00

Classe: GP

Date : 31/03/2016

Page : 1/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE 5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

Nom et Sigle		Date et Signature
Préparé par	CHRETIEN A.	A. Chrotiero
	SDP/ES	2 5 MAI 2016
Vérifié par	LOSADA C.	NO ADA
	SDP/ES	1 9 MAI 2016
A	RICHARD S.	
Approuvé par	SDP/ES	25/05/16

Application autorisée	TRINCHERO J.P.	2 5 MAI 2016	
par	SDP/ES	//	

DIFFUSION

destinataire	Nb
ADEME	1
AE/DP/K	1
CG/COM	1
CNES/PARIS - DP/CME	1
DEAL	1
DLA/D	1
ESA/K	1
IRD	1
MAIRIE DE KOUROU	1
MAIRIE DE SINNAMARY	1
ONF	1
ORA GUYANE	1
SDO/SC	1
SDP/ES	1
SDP/ES/ENV	1
S.P.P.P.I.	1

Nombre total d'exemplaires : 16

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 2/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

REPERTOIRE DES MODIFICATIONS

Ed/Rév	Date	Pages Modifiées	Objet de la modification
01/00	31/03/2016	TOUTES	CREATION / CHRETIEN A. & LOSADA C

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 3/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

SOMMAIRE

1.	OBJET - DOMAINE D'APPLICATION	4
2.	DOCUMENTS DE REFERENCE	5
2.2	DOCUMENTS APPLICABLES	5
3.	DEFINITIONS ET SIGLES	6
	DEFINITIONS	
	RAPPELS CONCERNANT LE PLAN DE MESURES ENVIRONNEMENT ARIANE 5 VOL 226	8
5.	LOCALISATION DES POINTS DE MESURES	9
	LOCALISATION DES POINTS D'ECHANTILLONNAGE POUR LE CHAMP PROCHE	
6.	LES CONDITIONS METEOROLOGIQUES	.10
	2. DONNEES BRUTES DU RADIOSONDAGE 4R300915	. 14 . 15
	DONNEES CEP SUIVI DES RETOMBEES CHIMIQUES GAZEUSES ET PARTICULAIRES EN CHAMPS PROCHE, MOYEN ET LOINTAIN	3
7.2	. OBJECTIF DES MESURES	. 19 . 20 . 21
8.	MESURE EN CONTINU DE LA POLLUTION GAZEUSE EN ACIDE CHLORHYDRIQUE .	.23
_	. OBJECTIF DES MESURES	. 23
9.	CONCLUSIONS GENERALES SUR LE SUIVI DE L'IMPACT SUR L'ENVIRONNEMEN DU LANCEUR ARIANE 5 VOL 226	
10. VOL	ANNEXE 1 - RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE 5 A226 REALISE PAR CI/ESQS (DOCUMENT DE 13 PAGES)	

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 4/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

1. OBJET - DOMAINE D'APPLICATION

Ce document a pour objet de présenter les résultats des mesures d'impact sur l'environnement réalisées lors du lancement d'Ariane 5 qui transportait les satellites ARSAT-2 et SKY-Muster Le vol Ariane 226 a eu lieu le 30 septembre 2015 à 17 heures 30 minutes en heure locale, soit à 20 heures 30 minutes, en temps universel.

Ce document est élaboré pour répondre aux objectifs suivants :

- se conformer aux prescriptions de l'arrêté préfectoral d'autorisation d'exploiter l'Ensemble de Lancement Ariane numéro 3 (ELA3) [DA1],
- confirmer et enrichir les résultats obtenus lors des essais au banc et lors des lancements Ariane 5,
- confirmer les conclusions inscrites dans l'étude d'impact réalisée dans le cadre de la constitution du Dossier de Demande d'Autorisation d'Exploiter l'Ensemble de Lancement Ariane n°3.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 5/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

2. DOCUMENTS DE REFERENCE

2.1. Documents applicables

[DA1] Arrêté Numéro 1632/1D/1B/ENV du 24 juillet 2006 autorisant la Société Arianespace, sise boulevard de l'Europe - BP177- 91000 Evry à exploiter l'ensemble de lancement Ariane (ELA), sur la commune de Kourou

[DA2] OA5-PCO-83-7376-CNES – Préparation du plan de mesures environnement Ariane 5.

[DA3] CSG-ID-S3X-495-SEER - Description et exploitation des plans de mesures Ariane 5 et des mesures environnement.

2.2. Documents de référence

[DR1] CG/SDP/ES/N°15-160 – Plan de mesures Environnement Ariane 5, Vega et Soyuz – Centre Spatial Guyanais.

[DR2] Rapport final du groupe d'experts IRD, CNRS, INRA – Impacts des activités futures d'Ariane 5 sur l'environnement humain et naturel – Contrat de consultance IRD 9086-01/CNES/2129 – Janvier 2003.

[DR3] INERIS DRC-02-37656-AIRE n°656b-MRa-CFe : Aide à la définition d'une stratégie de surveillance de la qualité de l'air dans les zones habitées autour du CSG – DRIRE Antilles – Guyane – Décembre 2002.

[DR4] CG/SDP/ES/2006/N°1263 - Note relative au plan de mesures Environnement Ariane 5.

[DR5] CG/SDP/ES/2009/N°946 - Note relative à l'utilisation des prévisions CEP pour la mise en place des capteurs du plan de mesures Environnement Ariane 5.

2.3. Gestionnaire technique du document

Le service SDP/ES (Environnement et Sauvegarde Sol) est le gestionnaire technique de ce document.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 6/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

3. DEFINITIONS ET SIGLES

3.1. Définitions

Sans objet

3.2. Sigles

 Al_2O_3 : Alumine

Al³+ : Ion Aluminium

AFNOR : Association Française de Normalisation

ARTA : Accompagnement de Recherche et de Technologie Ariane (Programme d')

BAF : Bâtiment d'Assemblage Final

BCS : Bureau de coordination Sauvegarde

BLA : Base de Lancement Ariane

Ca : Calcium

Cl⁻ : Ion ChlorureCl : Contrat Industriel

CL : Champ Lointain

CMCK : Centre Médico-Chirurgical de Kourou CNES : Centre National d'Etudes Spatiales

CODEX : Collecte de Données Environnement eXtérieur du CSG (Réseau de)

CP : Champ Proche
CT : Centre Technique

CSG : Centre Spatial Guyanais

dB : Décibel

DBO₅ : Demande Biologique en Oxygène sur 5 jours

DCO : Demande Chimique en Oxygène
ELA : Ensemble de Lancement ARIANE
EAP : Etage d'Accélération à Poudre
EPC : Etage Principal Cryogénique
EPS : Etage à Propergol Stockable
ESQS : Europe Spatiale Qualité Sécurité
GPS : Système de Positionnement Global

H₂ : Dihydrogène

HC : Hydrocarbures imbrûlés HCI : Acide Chlorhydrique

ICPE : Installation Classée pour la Protection de l'Environnement

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe: GP

Date : 31/03/2016

Page : 7/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

Institut Nationale de l'Environnement Industriel et des Risques INERIS:

Institut de Recherche et de Développement IRD

Κ Potassium

LD Limite de Détection LH_2 Dihydrogène Liquide

MEST Matières En Suspension Totales

Magnésium Mg

Mono Méthyl Hydrazine MMH Chlorure de Sodium NaCl

 N_2H_4 Hydrazine

 N_2O_4 Peroxyde d'Azote Dioxyde d'Azote NO_2 NO_x Oxyde d'Azote рΗ Potentiel Hydrogène

Partie par milliard en volume (10-9), soit 1 mm³/m³ ppb

Partie par million ppm RN1 Route Nationale 1

SARRIM: « Stratified Atmosphere Release of Rockets Impact Model »

« Single Point Monitor » SPM

UDMH Unsymetrical Di MethylHydrazine (Diméthyl hydrazine asymétrique)

VLI Vitesse Limite d'Impact

VTR Valeur Toxicologique de Référence

ZL3 Zone de Lancement n°3 ZΡ : Zone de Préparation

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 8/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

4. RAPPELS CONCERNANT LE PLAN DE MESURES ENVIRONNEMENT ARIANE 5 Vol 226

Le plan de mesures environnement permet de quantifier et de surveiller les retombées en alumine et en acide chlorhydrique issues du 1^{er} étage d'Ariane (2 EAP constitués de 240 tonnes de propergol solide chacun, soit 480 tonnes au total).

Pour rappel, les domaines couverts par ce plan de mesures Ariane 5 Vol 226 [DR1] sont les suivants :

- Mesurer, en temps réel et en différents lieux (villes de Kourou, de Sinnamary, le Centre Technique du CSG et aux sites d'observation des lancements), les concentrations atmosphériques en gaz chlorhydrique, en dioxyde d'azote (NO₂) et en produits hydrazinés par l'intermédiaire d'analyseurs de type Single Point Monitor (SPM-Honeywell); ces derniers constituant le réseau CODEX. Les composés suivis ne sont émis qu'en cas de fonctionnement dégradé (accident) du lanceur.
- Mesurer les concentrations en champs proche, moyen et lointain, des retombées chimiques particulaires en alumine et en acide chlorhydrique (ou chlorure d'hydrogène) ainsi que les retombées chimiques gazeuses en gaz chlorhydrique.

Cette démarche permettra également de réaliser une corrélation avec les résultats trouvés avec un logiciel de modélisation nommé « Stratified Atmosphere Release of Rockets Impact Model » (SARRIM).

Nota:

La mise en place et le retrait du dispositif de suivi de la qualité de l'air et l'activation du réseau CODEX (Single Point Monitor de marque Honeywell) ont été réalisés par le CI/ESQS/ES. Pour rappel, les « SPM-Honeywell » sont entretenus et étalonnés par le laboratoire de chimie du CSG (CI/SNECMA).

En outre, l'évaluation de la qualité (et ainsi la conformité) des eaux des carneaux de la ZL3 avant rejet dans le milieu naturel est réalisée par l'établissement Arianespace.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 9/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

5. LOCALISATION DES POINTS DE MESURES

La localisation des points de mesures et leur distance par rapport à la ZL3 sont présentées au paragraphe 3 de l'Annexe 1 du présent document.

<u>Tableau 1</u> : Récapitulatif de l'implantation des capteurs de mesure.

		EMPLACEMENT	DISTANCE ZL3 (m)	SPM- Honeywell
A	СРХ	12 points en champ proche (CP)	Confer le <i>paragraph</i>	o 2 do l'Annovo 1
R	CLX	35 points en champ lointain (CL)	Conier le paragraph	e 3 de l'Allilexe T

Le détail des instruments mis en place est présenté au paragraphe 2 de l'Annexe 1.

Au total, cette partie du plan de mesures environnement du Vol A226 représente soixante quinze capteurs répartis selon les équipements suivants :

- 47 bacs à eau,
- 4 SPM-Honeywell mobiles (HCl en continu),
- 8 SPM-Honeywell fixes, chacun comprenant :
 - o 1 SPM pour HCI,
 - 1 SPM pour l'hydrazine
 - 1 SPM pour le NO₂.

5.1. Localisation des points d'échantillonnage pour le champ proche

Pour le lancement Ariane 5 Vol A226, ont été installés :

- sur 12 sites : des bacs à eau pour le suivi des retombées chimiques et particulaires du nuage de combustion d'Ariane 5,
- 1 SPM-Honeywell mobile (HCl en continu)

5.2. Localisation des points de mesures pour les champs moyen et lointain

En champs moyen et lointain, on dénombre :

- sur 35 sites: des bacs à eau pour le suivi des retombées chimiques et particulaires du nuage de combustion d'Ariane 5,
- 3 SPM-Honeywell mobiles (HCl en continu).

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 10/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

6. LES CONDITIONS METEOROLOGIQUES

La localisation du nuage de combustion d'Ariane 5 peut varier à chaque lancement. Cette localisation ne peut être connue à l'avance du fait de la spécificité de la climatologie locale.

Afin d'optimiser l'emplacement des capteurs sur la trajectoire la plus probable du nuage, un radiosondage (réalisé au plus proche du H0) ainsi qu'une prévision météorologique (réalisée pour une échéance proche du H0) ont été utilisés.

Au moyen du logiciel SARRIM, des modélisations des conditions météorologiques du jour du lancement ont été effectuées telles que :

- Les résultats de simulation obtenus à partir des données météorologiques prévisionnelles (CEP ou ARPEGE) ont permis de <u>choisir l'option de pose</u> des capteurs [DR5],
- Les résultats de simulation obtenus à partir du radiosondage effectué en chronologie positive (hauteur de stabilisation, déplacement du nuage, etc.) pourront être corrélés aux valeurs de terrain (présentées aux paragraphes 6 et 7 du présent document).

La comparaison des résultats issus de ces deux modélisations permet d'apprécier l'efficacité du modèle et d'attester sa cohérence avec la réalité du terrain.

6.1. Simulation SARRIM à partir de données prévisionnelles

Les données d'entrée nécessaires à la simulation sont les suivantes :

- Les caractéristiques du lanceur,
- La position géographique de la zone de lancement (latitude, longitude),
- Les données météorologiques prévisionnelles issues de CEP modèle prévisionnel de profils thermodynamiques – confer la note),
- etc.

<u>Nota</u>: CEP est un modèle numérique c'est-à-dire un programme informatique qui modélise l'évolution de l'atmosphère avec un maillage (spatial et temporel) donné. Les résultats fournis par ce modèle permettent de prévoir le temps (conditions météorologiques) qu'il devrait faire pour les heures, jours ou semaines qui viennent.

Les résultats de la simulation sont récapitulés dans le tableau de la page suivante.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 11/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

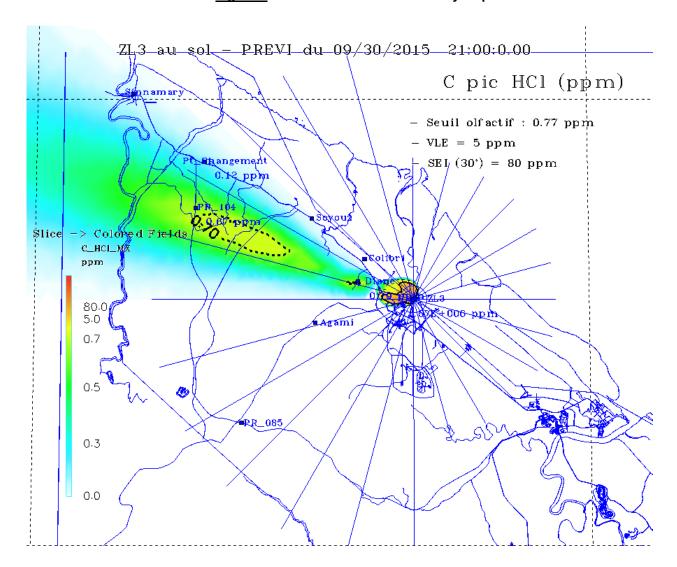
<u>Tableau 2</u>: Synthèse des résultats obtenus suite à la modélisation SARRIM à partir des données prévisionnelles CEP (2A300915.txt).

HAUTEUR DE STABILISATION DU NUAGE (m)	1097			
BASSES COUCHES (0 → HAUTEUR DE STABILISATION)				
- Vitesse moyenne des vents (m/s)	6,2			
- Direction moyenne des vents (°)	105			
⇒ Les vents sont orientés vers	Diane			
HAUTES COUCHES (HAUTEUR DE STABILISATION → 4000 M)				
- Vitesse moyenne des vents (m/s)	8,0			
- Direction moyenne des vents (°)	115			
⇒ Les vents sont orientés vers	Diane			

Les Figures 1 et 2 ci-après présentent la prévision des directions du nuage de combustion au H0.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP


Date : 31/03/2016

Page : 12/38

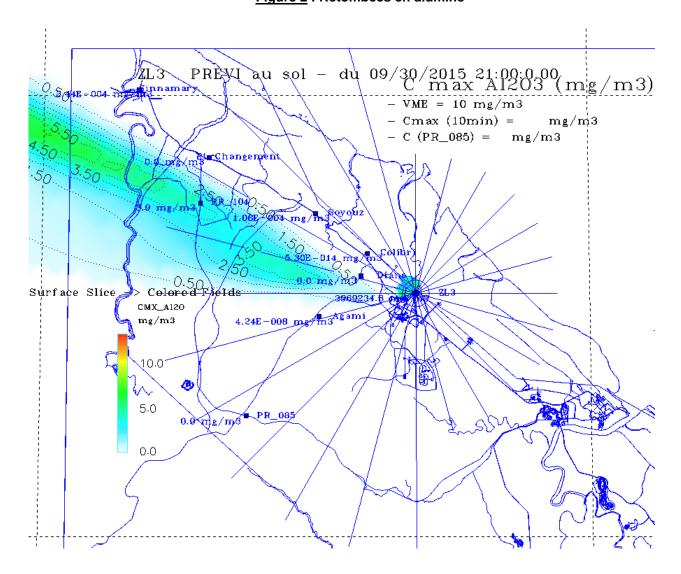
RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

Figure 1 : Retombées en acide chlorhydrique

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP


Date : 31/03/2016

Page : 13/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

Figure 2 : Retombées en alumine

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 14/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

6.2. Données brutes du radiosondage 4R300915

Le jour du lancement, à H0 + 29 minutes, un radiosondage (RS) spécifique a été effectué (référence 4R300915.txt du 30 septembre 2015).

Sur trois cent vingt-cinq couches distinctes, le RS donne des informations tous les cent mètres et permet ainsi d'effectuer une simulation avec les paramètres météorologiques les plus représentatifs du H0.

<u>Tableau 3</u>: Données météorologiques issues du radiosondage 4R300915.txt pour les couches atmosphériques représentatives.

ALTITUDE (mètres)	PRESSION (mb)	VITESSE DU VENT (m/s)	VENT EN PROVENANCE (°)	TEMPERATURE (°C)	HUMIDITE (%)
12	1006,8	4,0	80	28,4	80,0
100	996,9	5,4	105	27,1	79,1
500	952,8	8,0	100	24,0	81,4
1000	899,9	4,0	137	21,9	85,3
1500	849,5	6,8	148	19,3	71,5
2000	801,3	11,4	131	16,4	57,5
2500	755,4	8,7	120	13,4	39,9
3000	711,6	6,1	107	9,8	54
3500	669,8	6,6	115	7,7	22,8
4000	630,2	8,5	123	4,7	70,7

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 15/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

6.3. Simulation SARRIM à partir du radiosondage

Les données d'entrée nécessaires à la simulation sont les suivantes :

- Les caractéristiques du lanceur,
- La position géographique de la zone de lancement (latitude, longitude),
- Les données météorologiques recueillies à l'aide d'un radiosondage,
- etc.

Au moyen des données issues de la modélisation SARRIM, la hauteur à laquelle le nuage de combustion se stabilise ainsi que la direction et la vitesse qu'il prend dans les basses et les hautes couches de l'atmosphère sont déterminées. Les résultats sont synthétisés dans le tableau cidessous.

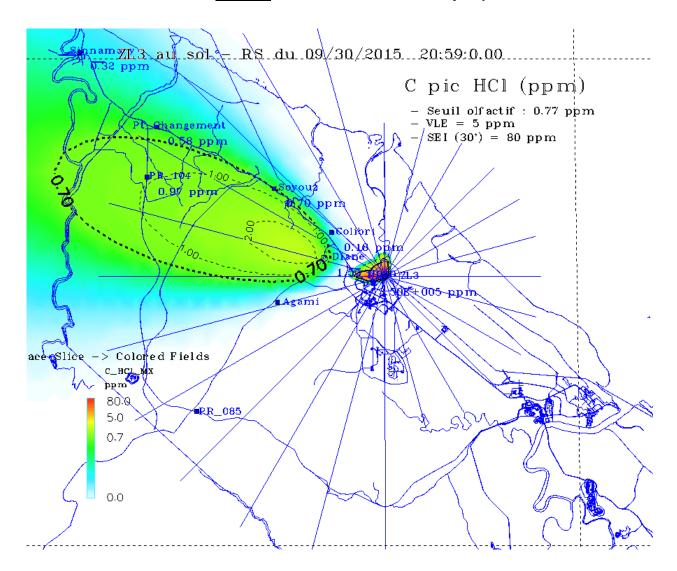
<u>Tableau 4</u> : Synthèse des résultats obtenus suite à la modélisation SARRIM à partir du radiosondage.

HAUTEUR DE STABILISATION DU NUAGE (M)	1044	
BASSES COUCHES DE L'ATMOSPHERE (pour une altitude allant du sol jusqu'à la hauteur de stabilisation)		
- Vitesse moyenne des vents (m/s)	5,8	
- Direction moyenne des vents (°)	105	
⇒ Les vents sont orientés vers	Diane	
HAUTES COUCHES DE L'ATMOSPHERE (pour une altitude al jusqu'à 4000 m)	lant de la hauteur de stabilisation	
- Vitesse moyenne des vents (m/s)	7,8	
- Direction moyenne des vents (°)	128	
⇒ Les vents sont orientés vers	Ensemble de lancement Soyuz	

Les *Figures 3 et 4* ci-après présentent les directions prises par le nuage de combustion au H0 + 29 minutes.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP


Date : 31/03/2016

Page : 16/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

Figure 3 : Retombées en acide chlorhydrique

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP


Date : 31/03/2016

Page : 17/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

Figure 4 : Retombées en alumine

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 18/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

6.4. Comparaison des résultats des simulations réalisées à partir du radiosondage et des données prévisionnelles CEP

L'optimisation de l'emplacement des capteurs en champ lointain a été réalisée au moyen de la simulation SARRIM effectuée avec les données prévisionnelles CEP pour le J0 à H0. Aucun écart n'est observé entre la direction calculée par SARRIM avec les données CEP et celle prise par le radiosondage H0 + 29 min.

Pour rappel, les capteurs ont été implantés suivant la situation «**Route de l'Espace** », à savoir Ouest /Nord-Ouest (confer le *paragraphe 3. de l'Annexe I* du présent document).

Aucun écart n'ayant été observé sur la direction du nuage des deux modélisations, les capteurs ont donc été correctement implantés. Ces derniers ont tous été soumis aux retombées provenant du nuage de combustion d'Ariane 5.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 19/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

7. SUIVI DES RETOMBEES CHIMIQUES GAZEUSES ET PARTICULAIRES EN CHAMPS PROCHE, MOYEN ET LOINTAIN

7.1. Objectif des mesures

Les mesures des retombées chimiques gazeuses et particulaires ont pour objectif d'évaluer les retombées issues de la combustion des EAP lors des lancements Ariane 5.

Pour cela, le dispositif mis en œuvre a pour but de mesurer les retombées sédimentables réalisées au moyen de quarante-cinq pièges à eau disposés à 1,50 mètres de hauteur (conformément à la norme AFNOR NF X 43-006).

Les paramètres suivis sont :

- ✓ le pH (en unité pH),
- ✓ la conductivité (en µS/cm à 25°C),
- ✓ les concentrations en ions chlorure (exprimés en mg/L puis en mg/m²),
- ✓ les concentrations en aluminium dissous, particulaire et total (exprimés en mg/L puis en mg/m²).

Un rappel sur les limites réglementaires de toxicité des principaux produits émis par le lanceur Ariane 5 est fait au *paragraphe 7 de l'Annexe 1* du présent document.

7.2. Résultats des mesures

Tous les résultats bruts sont synthétisés au paragraphe 4 de l'Annexe 1 du présent document.

<u>Remarque</u>: Durant les 24 heures d'exposition, aucune pluie n'a été enregistrée. En conséquence

de cette absence de pluie et du fort ensoleillement, le volume moyen des échantillons a fortement diminué (volume moyen recueilli 366 ml au lieu de 500 ml).

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 20/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

7.2.1. Analyse des retombées en alumine particulaire sédimentable

<u>Tableau 5</u>: Points de mesure présentant des concentrations maximales en champ proche et en champ lointain

	ALUMINE PARTICULAIRE		
	Concentration Maximale (mg/m²)	Point de mesure	Distance de la ZL3 (m)
Champ proche	302,93	CP01 : Chemin de ronde ZL3 - Intersection entre zone 49 et 50	362
Champ lointain	2,36	CL 08 : Parking Ancienne RN1	1874,1

Remarques:

Les concentrations mesurées en champ proche sont nettement supérieures à celles quantifiées en champs moyen et lointain. Par ailleurs, les concentrations les plus significatives, au-delà du pic enregistré au point CP 01, ont été détectées sur les points CP03 (70,10 mg/m², implanté à 277 mètres), CP 02 bis (45,90 mg/m², implanté à 252 mètres) et CP05 (51,01 mg/m², implanté à 533 mètres).

Pour les points CP 08 à CP 10 les teneurs restent non détectables.

De plus, il est intéressant de souligner que les valeurs en alumine enregistrées en champ lointain ne sont pas représentatives de la trace du nuage d'Ariane 5. Ainsi, on peut conclure que les résultats sont identiques et comparables au bruit de fond naturel ambiant.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 21/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

7.2.2. Analyse des retombées chimiques gazeuses et particulaires d'acide chlorhydrique

<u>Tableau 6</u>: Points de mesure présentant des concentrations maximales en champ proche et en champ lointain

	IONS CHLORURES		
	Concentration Maximale (mg/m²)	Point de mesure	Distance de la ZL3 (m)
Champ proche	5173.1	CP03 : Chemin de ronde ZL3 - Intersection entre zone 49 et 48	277
Champ lointain	88,1	CL 08 : Parking Ancienne RN1	1874,1

<u>Tableau 7</u>: Points de mesure présentant des valeurs maximales en champ proche et en champ lointain

	РΗ		
	Acidité maximale (unité pH)	Point de mesure	Distance de la ZL3 (m)
Champ proche	2,05	CP 03 : Chemin de ronde ZL3 - Intersection entre zone 49 et 48	277
Champ lointain	4,10 CL 08 : Parking ancienne RN1		1874,1
	CONDUCTIVITE		
	Maximum (μS/cm)	Point de mesure	Distance de la ZL3 (m)
Champ proche	4640.0	CP 03 : Chemin de ronde ZL3 - Intersection entre zone 49 et 48	277
Champ lointain	43,0	CL 08 : Parking Ancienne RN1	1874,1

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 22/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

Remarques:

Tout comme l'alumine, les concentrations en ions chlorures sont élevées en champ proche, notamment dans l'axe des carneaux de la ZL3 (points CP 01 implanté à 362 mètres, CP 02 implanté à 236 mètres, CP02bis à 236 mètres et CP03 à 277 mètres).

- D'autre part, les concentrations en ions chlorures sont cohérentes aux valeurs de pH et de conductivités mesurées. En effet, plus les concentrations en ions chlorures sont élevées, plus le pH est faible et plus la conductivité est élevée.
- Ainsi, les mesures mettent en évidence un impact des retombées chimiques en acide chlorhydrique uniquement en champ proche. Au-delà, les valeurs mesurées constituent le bruit de fond ambiant.
- La forte concentration en chlorures sur les points CL 01 (implanté à Kourou sur la station météo Isabelle) et CL02 (Implanté à Kourou hôtel des roches) sont dues aux aérosols marins. L'influence de ces aérosols est variable car l'intensité de la source de particules marines est directement liée à la force du vent à la surface de la mer. Ces dépôts peuvent donc être plus ou moins importants selon les variations saisonnières de l'intensité du vent mais aussi de la salinité de l'eau de mer. Il est à noter que cette influence reste faible au CSG, quand il ne pleut pas. Cependant l'essentiel des capteurs positionnés près de la côte restent influencés par l'air marin et c'est pourquoi ces capteurs enregistrent régulièrement des pics de concentrations de chlorures et conductivité électrique.

7.3. Conclusions sur les retombées chimiques gazeuses et particulaires

Les mesures mettent en évidence un impact des retombées chimiques en acide chlorhydrique et en alumine uniquement en champ proche. Au-delà, les valeurs quantifiées restent représentatives du bruit de fond ambiant, ou inférieures aux seuils de quantification.

Une comparaison entre les résultats des simulations SARRIM réalisées au moyen des données prévisionnelles CEP et des radiosondages et les données mesurées sur le terrain a été effectuée.

Elle met en évidence que :

- les données CEP prévoyaient que le nuage se dirigerait dans une direction de 105°,
- le radiosondage montrait une direction de 105°
- les concentrations relevées les plus fortes se trouvaient dans une direction de 105°.

Ainsi, on n'observe aucun écart entre les deux simulations et les mesures de terrain. L'utilisation des données prévisionnelles reste donc le moyen le mieux adapté pour optimiser l'implantation des capteurs environnement pour les lancements Ariane 5.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 23/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

8. MESURE EN CONTINU DE LA POLLUTION GAZEUSE EN ACIDE CHLORHYDRIQUE

8.1. Objectif des mesures

Ces mesures ont pour objectif de suivre en temps réel :

- les concentrations en gaz chlorhydrique en situation nominale de lancement
- les concentrations en gaz chlorhydrique, en dioxyde d'azote (NO₂) et des produits hydrazinés en situation dégradée

Les détecteurs de type SPM (Single Point Monitor de type « SPM - Honeywell ») du réseau CODEX sont implantés sur les lieux fixes suivants :

- dans la ville Kourou au niveau :
 - o du local annexe du club de bridge de l'Hôtel des Roches
 - de la toiture du bâtiment des urgences du Centre Médico-Chirurgical de Kourou (CMCK)
 - o de l'embarcadère des îles du Salut au Vieux-Bourg (cabanon en bois)
 - o de la station météo Isabelle de la plage de la Cocoteraie (cabanon en bois)
- dans la ville de Sinnamary au niveau de la Gendarmerie (abri en bois)
- au Centre Technique du CSG, dans une annexe au bâtiment « électromécanique »
- sur les sites d'observation Agami (mobil home) et Toucan (cabanon en bois)

Les quatre unités de détecteurs mobiles sont mises en place sur des sites dont la localisation est optimisée par simulation avec le logiciel de dispersion atmosphérique SARRIM.

La retransmission des données en temps réel se fait à l'aide de balises par voie hertzienne et filaire vers un poste informatique au Bureau de Coordination Sauvegarde (BCS) situé au Centre Technique.

8.2. Résultats des mesures

Sur l'ensemble des systèmes détecteurs du réseau de Collecte de Données Environnement eXtérieur du CSG (CODEX), composé de vingt-quatre systèmes CODEX détecteurs fixes et quatre systèmes CODEX mobiles.

Aucune pollution n'a été détectée par les SPM-Honeywell mobiles disposés en CP03, CL08, CL 09 et CL 14.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 24/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

9. CONCLUSIONS GENERALES SUR LE SUIVI DE L'IMPACT SUR L'ENVIRONNEMENT DU LANCEUR ARIANE 5 VOL 226

La surveillance de la qualité de l'air a mis en évidence qu'une forte proportion de l'alumine et du gaz chlorhydrique retombe à proximité de la ZL3 (en champ proche).

L'implantation des capteurs environnement a été réalisée suivant l'option « Route de l'Espace » au moyen du calcul SARRIM issu des données prévisionnelles CEP.

Les résultats du radiosondage H0 + 29 minutes, des données prévisionnelles CEP et des données de terrain sont **cohérents entre eux.**

Pour le Vol A226, aucune pollution d'acide chlorhydrique n'a été enregistrée.

Réf. : CG/SDP/ES/N°16-306

Ed/Rév : 01/00 Classe : GP

Date : 31/03/2016

Page : 25/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A226 DU 30 SEPTEMBRE 2015 À 17h30

10. ANNEXE 1 - RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE 5 VOL A226 REALISE PAR CI/ESQS (DOCUMENT DE 13 PAGES)

Référence : 15.SE.RS. 37

Date: 15/12/2015

Page: 1/13

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE VA226

DIFFUSION: SDP/ES (2 exemplaires); ESQS/A; ESQS/SE/RTP

ESQS/SE/RTP

J.HERAUD

Référence: 15.SE.RS. 37

Date: 15/12/2015

Page: 2/13

1. Introduction

Le vol Ariane 5 VA 226 a permis le lancement d'ARSAT-2 et Sky Muster (VA 226) le 30/09/2015 à 17h30 (heure locale)

Ce rapport présente l'ensemble des résultats obtenus. Il détaille :

- la description des mesures réalisées pour ce lancement;
- la localisation des points de mesures (en champ proche et en champ lointain) ;
- les résultats des analyses faites à partir des bacs à eau ;
- les résultats des détections du réseau CODEX ;
- un rappel sur les limites réglementaires de toxicité des principaux produits émis par le lanceur Ariane 5.

1.1. Instrumentation

Pour ce lancement, le plan de mesures mis en œuvre était constitué de :

- en Champ proche 12 sites instrumentés* :
 - 1 Zellweger,
 - 12 bacs à eau (chaque bac reposant à 1,5 m de hauteur sur un trépied),
 - 5 pluviolessivats installés en CP04,
 - 1 préleveur d'eau automatique installé sur le pont de la rivière Karouabo
- en Champ lointain 35 sites instrumentés :
 - 3 Zellwegers,
 - 35 bacs à eau (chaque bac reposant à 1,5 m de hauteur sur un trépied)
 - 5 pluviolessivats installé en CL08.

1.2. Mise en place

Le matériel (Zellwegers, bacs à eau) a été installé le 30/09/2015 entre 07h00 et 11h30.

1.3. Retrait des capteurs et analyseurs et envoi des analyses aux laboratoires

Les capteurs et analyseurs ont été récupérés le 01/10/2015 entre 08h30 et 11h30. Les échantillons ont été confiés à l'Institut Pasteur de Guyane le 02/10/15 dans la matinée.

L'insuffisance de pluie enregistrée entre le 30/09/2015 et le 10/10/2015, n'a pas permis de récolter suffisamment de pluviolessivats pour procéder à leurs analyses.

Par ailleurs, le préleveur d'eau automatique a subit une avarie technique qui n'a pas permis le recueil des échantillons d'eau de la rivière Karouabo.

Référence : 15.SE.RS. 37

Date: 15/12/2015

Page : 3/13

2. Description des mesures réalisées pour le vol Ariane VA 226

2.1. Mesures des retombées chimiques gazeuses et particulaires

Ces mesures permettent de caractériser les retombées chimiques issues de la combustion des EAP en champ proche et en champ lointain. Les retombées sédimentables (chlorure, aluminium dissous, particulaire et total), le pH et la conductivité sont mesurées à l'aide de bacs à eau.

Dix bacs ont été disposés en champ proche, sur le chemin de ronde de la ZL3 tandis que 35 bacs ont été placés en champ lointain sur Kourou, Sinnamary, la piste Agami, la RN1, le site d'observation Toucan, l'ancienne carrière Roche Nicole, le site de suivi Diane, la route de l'espace et l'ancienne RN1.

La mise en œuvre a été assurée par ESQS et les analyses ont été confiées à l'Institut Pasteur de Guyane.

2.2. Mesures en continu de la qualité de l'air

La mise en place de ce réseau de détection est une des obligations de l'Arrêté d'Autorisation d'Exploiter l'ELA 3.

24 analyseurs ZELLWEGER sont installés à poste fixe sur 8 sites localisés à Kourou, Sinnamary, le Centre Technique et les sites d'observation (Agami et Toucan).

Ce réseau mesure en temps réel la teneur en acide chlorhydrique, en peroxyde d'azote et en produits hydrazinés dans l'atmosphère.

Les données sont centralisées vers le poste CODEX implanté au BCS (Bureau de Coordination Sauvegarde) localisé au Centre Technique.

Quatre appareils supplémentaires mobiles ont été mis en service à l'occasion de ce lancement pour la mesure d'HCI:

- Le mobile 1 était placé en champ proche au point de mesures CP3,
- les mobiles 3, 4 et 5 se situaient en champ lointain (respectivement aux points CL9, CL8 et CL14).

Les seuils de détections des appareils fixes sont les suivants :

Nom	Produits	Seuils de détection	Seuil olfactif
N ₂ H ₄	Produits hydrazinés	1 à 6 ppm	1,7 ppm
N ₂ O ₄	Dioxyde d'azote	1 à 45 ppm	0,2 ppm
HCI	Acide chlorhydrique	2 à 15 ppm	0,8 ppm

Les seuils de détections des appareils mobiles sont les suivants :

Nom	Produits	Seuils de détection champ proche	Seuils de détection champ lointain
HCI	Acide chlorhydrique	2 à 15 ppm	28 à 1200 ppb

L'étalonnage et l'exploitation de ces mesures sont assurés par le service SDO/SC.

Référence: 15.SE.RS. 37

Date: 15/12/2015

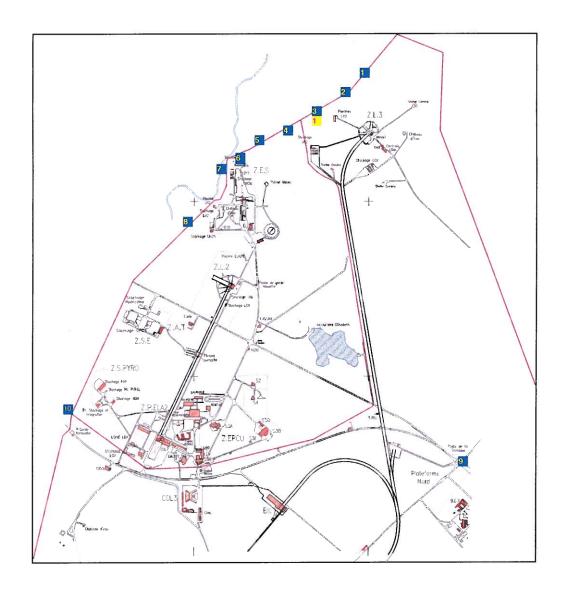
Page : 4/13

3. Localisation des points de mesures - champ proche (CP) et champ lointain (CL)

Suite aux résultats du dernier radiosondage, les bacs à eau ont été placés suivant l'option B = situation « Route de l'Espace ».

3.1. Champ proche

Code	Lieux	Distance ZL3 (m)	X (m)	Y (m)	Bac à eau	Zellweger
CP1	Chemin de ronde ZL3 - Intersection entre zone 49 et 50	362	303963	579859	Oui	-
CP2	Chemin de ronde ZL3 - milieu zone 49	236	303891	579708	Oui	-
CP2 bis	Entre CP2 et CP3	252	303840	579693	Oui	
СР3	Chemin de ronde ZL3 - Intersection entre zone 49 et 48	277	303788	579678	Oui	Zellweger n° 1
CP3 bis	Entre CP3 et CP 4	346	303673	579611	Oui	
CP4	Chemin de ronde ZL3 - Intersection entre zone 48 et 47	445	303557	579544	Oui	e e =
CP5	Chemin de ronde ZL3 Milieu de la zone 47	533	303467	579496	Oui	
CP6	Chemin de ronde ZL3 - Milieu de la zone 46	832	303185	579331	Oui	-
СР7	Chemin de ronde ELA2 - Intersection entre zone 44 et 45	1079	303027	579032	Oui	-
CP8	Chemin de ronde ELA2 - Milieu de la zone 42	1697	302595	578548	Oui	-
CP9	Orchidée	1984	304573	577600	Oui	-
CP10	Chemin de ronde ELA2 - Intersection entre zone 39 et 40	2313	302309	577921	Oui	-



Référence: 15.SE.RS. 37

Date: 15/12/2015

Page : 5/13

Piège à eau (1,5m)Station mobile de mesure HCl en temps réel

Référence: 15.SE.RS. 37

Date: 15/12/2015

Page : 6/13

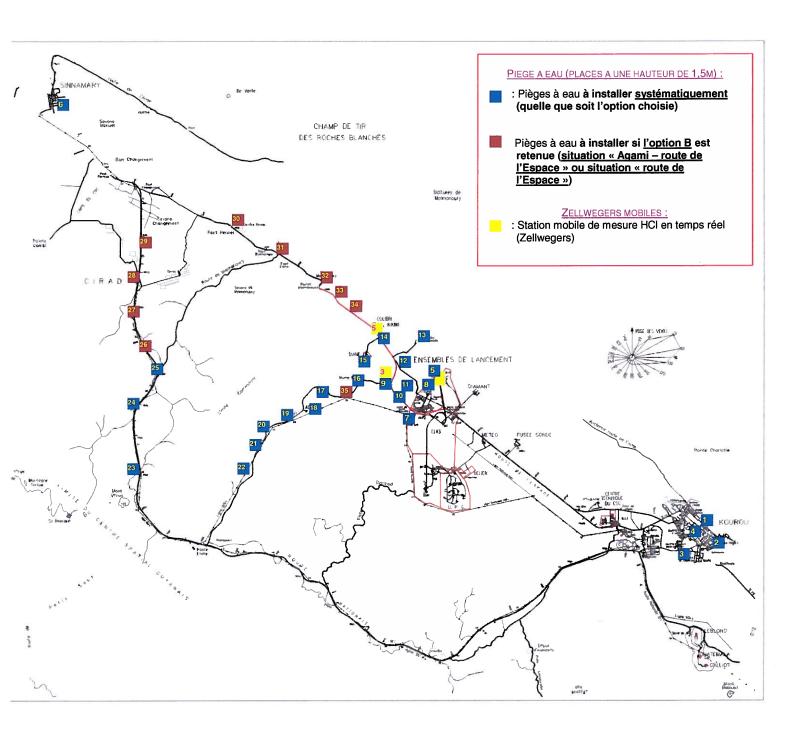
3.2. Champ lointain

Code	Lieux	Distance ZL3 (m)	(m)	Y (m)	Bac à eau	Zellweger
CL1	Kourou - Station Météo Isabelle	16268,2	318148	571469	Oui	-
CL2	Kourou - Hôtel Les Roches	17851,5	319511	570662	Oui	-
CL3	Kourou - Débarcadère des lles	17152,8	317867	569403	Oui	-
CL4	Kourou - CMCK	16057,6	317648	571039	Oui	-
CL5	Site Toucan	5163,8	304210	574340	Oui	-
CL6	Hôtel du Fleuve	24285,2	284238	593614	Oui	-
CL7	Pont Karouabo	1966,6	302650	578069	Oui	
CL8	Parking ancienne RN1	1874,1	302181	579048	Oui	Zellweger n°4
CL9	Portail Piste Agami	2929,0	301095	579125	Oui	Zellweger n°3
CL10	Mi chemin Karouabo-embranchement Piste Agami	2611,0	301552	578591	Oui	-
CL11	Intersection Piste Agami - Route de l'Espace	2789,8	301248	579045	Oui	-
CL12	PK17,7 depuis Changement sur RTE ESPACE direction ELA (Embranchement Ancienne RN1)	2640,1	301502	580355	Oui	-
CL13	Chemin menant à la carrière Roche Nicole	2922,9	301333	580695	Oui	-
CL14	PK16,15 depuis Changement sur RTE ESPACE direction ELA Embranchement Diane	4005,8	300641	581681	Oui	Zellweger n°5
CL15	Diane	4359,0	299915	581020	Oui	-
CL16	Piste Agami – PK 1,5 après portail Agami (entrée du morne Bocco)	4421,6	299583	579297	Oui	II _
CL17	Piste Agami – PK4 après portail	6160,3	297887	578737	Oui	-
CL18	Site Agami	7452,6	296770	577691	Oui	-
CL19	Piste Agami – PK8 après portail	9192,3	295161	576975	Oui	-
CL20	Piste Agami – PK10 après portail	10593,6	294189	575503	Oui	-
CL21	Piste Agami – PK11 après portail	11144,1	293971	574640	Oui	-
CL22	Piste Agami – PK12 après portail	11986,2	293422	573862	Oui	-
CL23	Sur RN1 direction Sinnamary 6Km après carrefour piste Agami soit PK 91,1 de la RN1	17019,7	287851	574125	Oui	-
CL24	Sur RN1 direction Sinnamary 10 km après carrefour piste Agami soit PK 95,1 de la RN1	16225,1	287829	578175	Oui	-
CL25	Sur RN1 direction Sinnamary 12 km après carrefour piste Agami soit PK 97,1 de la RN1	15243,6	288758	579723	Oui	-
CL26	Sur RN1 direction SINNAMARY 14 Km apres carrefour piste Agami soit PK 99,1 de la RN1	16207,0	287912	581459	Oui	
CL27	Sur RN1 direction SINNAMARY 16 Km apres carrefour piste Agami soit PK 101,1 de la RN1	16958,4	287514	583474	Oui	

Référence : 15.SE.RS. 37

Date: 15/12/2015

Page : 7/13


Code	Lieux	Distance ZL3 (m)	X (m)	Y (m)	Bac à eau	Zellweger
CL28	Sur RN1 direction SINNAMARY 18 Km apres carrefour piste Agami soit PK 103,1 de la RN1	17273,5	287765	585398	Oui	- -
CL29	Sur RN1 direction SINNAMARY 20 Km apres carrefour piste Agami soit PK 105,1 de la RN1	18000,7	287853	587455	Oui	-
CL30	PK5 depuis Changement sur RTE ESPACE direction ELA (200 m avant entrée Carrière Remy)	14683,9	292085	588081	Oui	-
CL31	PK8 depuis Changement sur RTE ESPACE direction ELA	11161,4	295177	586335	Oui	-
CL32	PK11,5 depuis Changement sur RTE ESPACE direction ELA (Portail Malmanoury)	8395,0	297479	584786	Oui	-
CL33	PK12 depuis Changement sur RTE ESPACE direction ELA	7904,7	297715	584293	Oui	-
CL34	PK13 depuis Changement sur RTE ESPACE direction ELA	6757,7	298557	583504	Oui	-
CL35	3 km après portail Agami	5362,0	298734	578489	Oui	-

Référence: 15.SE.RS. 37

Date: 15/12/2015

Page: 8/13

Référence: 15.SE.RS. 37

Date: 15/12/2015

Page: 9/13

4. Mesures des retombées chimiques particulaires

Le temps d'exposition des bacs à eau a été d'environ 24H (du 30 septembre 2015 07H au 1 octobre 2015 11H00)

Le volume d'eau distillée initialement versé dans les bacs était de 500 ml.

Durant ces 24 heures d'exposition, aucune pluie n'a été enregistrée. En conséquence de cette absence de pluie et du fort ensoleillement, le volume moyen des échantillons a fortement diminué (volume moyen recueilli 366 ml)

Pour ce plan de mesure, la limite de détection de l'aluminium a été fixée à 0,02mg/l, soit 0,48mg/m² pour 500ml d'eau recueillis dans les bacs de dimensions 17,4 x 12 cm.

La concentration en aluminium particulaire n'est pas mesurée mais calculée par différence entre les concentrations en aluminium total et aluminium dissous. Pour cette raison, lorsque les concentrations en Aluminium total ou dissous sont inférieures à la limite de détection (0,02mg/L), l'annotation « Non Quantifiable (n.q)» est indiquée pour la concentration en Aluminium particulaire.

Les volumes d'eau recueillis étant différents d'un point à un autre, les concentrations surfaciques seront différentes pour une même concentration volumique. Exemple :

- pour un volume d'eau recueilli égal à 550 ml, une concentration de 2 mg/L correspondra à une concentration surfacique de 52,7 mg/m².
- pour un volume d'eau recueilli égal à 410 ml, une concentration de 2 mg/L correspondra à une concentration surfacique égale à 39,3 mg/m².

Référence : 15.SE.RS. 37 Date : 15/12/2015

Page : 10/13

4.1 Résultats d'analyse des bacs à eau « champ proche »

		A	Aluminium Dissous	Sno	Aluminium	ium Particulaire	ire	Alum	Aluminium TOTAL			Chlorures			
		Concentration			Concentration			Concentration			Concentration				
To Ho ell oco	Volume recueilli	mesurée dans le volume d'eau	capté	capté dans le bac	calculée dans le volume d'eau	capté dans le bac	us le bac	mesurée dans le volume d'eau	capté da	capté dans le bac	mesurée dans	captés da	captés dans le bac	표	Conductivité
Ocalisation	(m)	recueillie mg/l	mg	ma/m²	recueillie ma/l	- BE	ma/m*	recueillie	The d	mo/m²	deau recueillie	-	mo/m²		S/cm
CP1	235	22,400	5,264	252,11	26,916	6,325	302.93	49.316	11.589	555.04	209.76	49.29	2360.80	4 20	904 0
CP2	370	2,212	0,818	39,20	1,896	0,702	33.60	4.108	1.520	72.80	33.76	12.49	598 29	3.55	224.0
CP2 bis	380	2,550	696'0	46,41	2,522	0,958	45.90	5.072	1.927	92.31	48.82	18.55	888.40	3.15	403.0
CP3	350	4,729	1,655	79,27	4,182	1,464	70,10	8,911	3.119	149.37	308.62	108.02	5173.14	2.05	4640.0
CP 3 bis	355	1,439	0,511	24,47	1,476	0,524	25,09	2,915	1.035	49.56	117.48	41.71	1997.42	2.40	1677.0
CP4	350	8'0	0,280	13,41	905'0	0,177	8.48	1,306	0.457	21.89	14.85	5.20	248 89	3.55	136.0
CP5	380	6,950	2,641	126,48	2,803	1,065	51.01	9.753	3.706	177.50	72.75	27.64	8	3.20	498 0
CP6	355	< 0,02	800'0 >	< 0,35	0,068	0,024	1,16	0.068	0.024	1.16	3.09	1.10	52.54	4 40	20.0
CP7	365	0,044	0,016	0,77	0,031	0,011	0.54	0.075	0.027	1.31	1.54	0.56	26.96	5 70	0.6
CP8	380	< 0,02	< 0,008	< 0,37	n.q.			< 0.02	< 0.008	< 0.37	0.22	0.08	3 99	5.85	2.6
CP9	335	< 0,02	< 0,007	< 0,33	n.q.	,	,	< 0.02	< 0.007	< 0.33	0.71	0.24	11.31	00 9	3.7
CP10	340	< 0,02	< 0,007	< 0,33	n.q.			< 0.02	< 0.007	< 0,33	0,211	0,072	3,44	5,9	3,0

Référence: 15.SE.RS. 37

Date: 15/12/2015

Page: 11/13

4.2 Résultats d'analyse des bacs à eau « champ lointain »

		A	Aluminium Dissous	sn	Aluminium	um Particulaire	ire	Alum	Aluminium TOTAl)	Chlorures			
		Concentration			Concentration			Concentration			Concentration				
i di ci	Volume recueilii	mesurée dans le volume d'eau	capté	capté dans le bac	calculée dans le volume d'eau	capté dans le bac	is le bac	mesurée dans le volume d'eau	capté dans le bac	ns le bac	mesurée dans le volume	captés dans le bac	ins le bac	Ŧ.	Conductivité
Localisanon	Ē	recueillie mg/l		mg/m²	recueillie mg/l	- BW	ma/m²	recueillie mg/l	BW	mg/m²	d'eau recueillie mg/l	E	mg/m²		µS/cm
CL01	325	< 0,02	< 0,007	< 0,32	n.q.			< 0,02	< 0,007	< 0,32	0,91	0,296	14,20	4,90	8,3
CL02	390	< 0.02	800'0 >	< 0,38	n.q.	٠		< 0.02	< 0,008	< 0,38	0,41	0,160	89'2	5,25	4,3
CL03	420	< 0,02	600'0 >	< 0,41	n.q.			< 0,02	600'0 >	< 0,41	0,78	0,329	12,77	5,15	3,6
CL04	375	< 0,02	800'0 >	< 0,36	n.q.	,		< 0,02	< 0,008	96,0 >	1,89	0,708	33,89	6,00	2,8
CL05	350	< 0,02	800'0 >	< 0,34	n.q.	•		< 0,02	< 0,008	< 0,34	0,28	0,098	4,71	5,35	3,5
90TO	380	< 0,02	< 0,008	< 0,37	n.q.			< 0,02	< 0,008	< 0,37	0,12	0,046	2,22	5,40	2,5
CL07	410	< 0,02	600'0 >	< 0,40	n.q.		,	< 0,02	< 0,009	< 0,40	0,84	0,345	16,53	5,90	3,0
CL08	365	0,182	0,066	3,18	0,135	0,049	2,36	0,317	0,116	5,54	5,04	1,840	88,10	4,10	43,0
CL09	365	< 0,02	< 0,008	< 0,35	n.q.		,	0,035	0,013	0,61	0,20	0,074	3,53	5,50	2,5
CL10	360	< 0.02	< 0,008	< 0,35	n.q.			< 0,02	< 0,008	< 0,35	0,14	0,052	2,48	5,55	1,7
CL11	360	< 0,02	< 0,008	< 0,35	n.q.	•	,	< 0.02	< 0,008	5 6'0 >	0,33	0,120	92'5	5,45	3,6
CL12	365	< 0,02	< 0,008	< 0,35	n.q.			< 0.02	< 0,008	< 0,35	0,41	0,151	7,22	5,80	3,9
CL13															
CL14	330	< 0,02	< 0,007	< 0,32	n.q.	1		0,024	800'0	86,0	0,85	0,280	13,40	6,00	6,5
CL15	340	< 0,02	< 0,007	< 0,33	n.q.	,	٠	< 0,02	< 0,007	< 0,33	0,28	960'0	4,56	5,25	4,4
CL16	380	0,050	0,019	0,91	0,103	6:00	1,87	0,153	850'0	2,78	1,20	0,456	21,86	6,05	6,1
CL17	430	< 0,02	< 0,009	< 0,42	n.q.	•		< 0,02	600'0 >	< 0,42	1,10	0,471	22,57	5,40	2,4
CL18	400	< 0,02	< 0.009	66'0 >	n.q.		-	< 0,02	600'0 >	< 0,39	0,74	0,295	14,12	6,05	6,1
								CALCELO DE CONTROLO							

Référence : 15.SE.RS. 37

Date: 15/12/2015

Page: 12/13

		A	Aluminium Dissous	Since	Aluminium	um Particulaire	ire	Afrim	Aluminium TOTAL			Chloringe			
		Concentration			Concentration			Concentration			Concentration	3			
calisation	Volum	mesurée dans le volume d'eau	capté	capté dans le bac	calculée dans le volume d'eau	capté dans le bac	is le bac	mesurée dans le volume d'eau	capté dans le bac	is le bac	mesurée dans le volume	captés da	captés dans le bac	玉	Conductivité
	Ē	recueillie ma/l	- ma	ma/m²	recueillie ma/l	=	mo/m²	recueillie		malma	deau recueillie				Class
CL 19	410	< 0,02	< 0,009	< 0.40	0.053	0.022	1.04	0 061	0 025	1.20	0.05	0 022	104	5.70	19
CL20	410	< 0,02	< 0,009	< 0,40	0,056	0,023	1,10	0.065	0.027	1.28	< 0.05	< 0.021	66.0 >	5.35	6,5
CL21	405	< 0,02	< 0,009	< 0,39	0,041	0,017	0.80	0.051	0.021	0.99	0.19	0.078	3.74	5.40	3.0
CL22	400	< 0,02	< 0,007	< 0,39	n.q.			0.029	0.012	0.56	0.08	0.030	1.46	5.60	2.0
CL23	410	< 0,02	< 0,009	< 0,40	n.q.			< 0.02	< 0.009	< 0.40	0.13	0.053	2.55	5.40	2.2
CL24	385	< 0,02	< 0,008	< 0,37	n.q.	,		0,023	600'0	0,42	0,19	0,074	3.52	5.05	5.0
CL25	410	< 0,02	600'0 >	< 0,40	n.q.	1		< 0,02	600'0 >	< 0,40	0.22	0.089	4.28	5.20	2.7
CL26	415	< 0,02	< 0,009	< 0,40	n.q.	,		< 0,02	< 0.009	< 0.40	0.15	0.061	2.94	5.40	5.6
CL27	420	< 0,02	< 0,009	< 0,41	n.q.			< 0.02	< 0.009	< 0.41	20.0	0.029	1 39	5.35	2.1
CL 28	420	< 0,02	600'0 >	< 0,41	n.q.	,		< 0.02	< 0.009	< 0.41	0.13	0.053	2.51	5.45	23
CL29	380	< 0,02	< 0,008	< 0,37	n.q.			< 0.02	< 0.008	< 0.37	0.08	0.030	1 46	5.35	2.6
CL30	360	< 0,02	< 0,008	< 0,35	n.q.			< 0.02	< 0.008	< 0.35	0.13	0 047	2.24	5 15) E
CL31			Mary Control									0000	0 00	2.6	2,5
CL32	410	< 0,02	< 0,009	< 0,40	n.q.			< 0.02	< 0.009	< 0.40	0.11	0 044	2.10	5.25	2.5
CL33	380	< 0,02	< 0,008	< 0,37	n.q.			< 0.02	> 0.008	< 0.37	0.28	0 105	5.02	5 15	3.2
CL34	290	< 0,02	< 0,006	< 0,28	n.q.	-		< 0.02	< 0.006	< 0.28	0.18	0.051	2 44	5 20	3.7
CL35	390	< 0,02	< 0,008	< 0,38	0.027	0.011	0.50	0 035	0 014	0.65	0.14	0.053	2.52	5.30	2.5

Référence : 15.SE.RS. 31

Date: 02/10/2015

Page : 13/13

5. Mesures de la qualité de l'air - Réseau CODEX

Aucune pollution n'a été détectée par les Zellweger mobile disposés en CP03, CL08, CL 09 et CL 14.

6. Rappels sur les limites réglementaires de toxicité des principaux produits émis par le lanceur Ariane 5

VLE/VME : Valeurs admises pour les concentrations de certaines substances dangereuses dans l'atmosphère des lieux de travail (INRS/Ministère du travail).

SEL : Concentration maximale de polluant dans l'air pour un temps d'exposition donné (30 minutes) en dessous de laquelle chez la plupart des individus, on n'observe pas d'effets létaux (décès).

SEI: Concentration maximale de polluant dans l'air pour un temps d'exposition donné (30 minutes) en dessous de laquelle chez la plupart des individus, on n'observe pas d'effets irréversibles (persistance dans le temps d'une atteinte lésionnelle ou fonctionnelle, directement consécutive à une exposition en situation accidentelle).

Type de gaz	VME	VLE
Alumine (poussière)	10 mg/m ³	-
Dose Alumine en mg.s/m ³	1440000	-

Type de gaz	S.E.I. 10 mn	S.E.I. 30 mn	S.E.L. 30 mn	VLE
HCI	240 ppm 358 mg/m ³	80 ppm 90 mg/m³	470 ppm 700 mg/m³	5 ppm
ose HCl en ppm.s	144000	144000	846000	

L'alumine ne présente pas de toxicité intrinsèque, par contre comme toute poussière, au-delà d'une certaine concentration dans l'air elle peut présenter des risques. Certaines valeurs ont été déterminées pour assurer la sécurité sur les lieux de travail. Pour les poussières inertes, il existe une VME (Valeur Moyenne d'Exposition des travailleurs). Cette valeur représente la concentration maximale à laquelle une personne peut être exposée sur son lieu de travail 8 heures par jour, 5 jours par semaine sans risque pour sa santé. Bien que non adaptée à l'environnement naturel, cette valeur nous donne un élément de comparaison.

La VME des poussières inertes est donc de 10mg/m³ pendant 8h, 5 jours/semaine ce qui correspond à une dose par semaine de 1440000 mg.s/m³.