

Réf.

: CG/SDP/ES/N°16 - 345

Ed/Rév : 01/00

Classe: GP

Date

: 25/05/2016

Page : 1/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT **ARIANE 5 VOL A228 DU 27 JANVIER 2016 À 20h20**

	Nom et Sigle	Date et Signature
Préparé par	CHRETIEN A.	A. Christian
	SDP/ES	30 MAI 2016
Vérifié par	LOSADA C.	John John John John John John John John
7	SDP/ES	3 1 MAI 2016
	RICHARD S.	
Approuvé par	SDP/ES	31105/16
Vérifié par Approuvé	LOSADA C. SDP/ES RICHARD S.	3 1 MAI 2016

Application autorisée	TRINCHERO J.P.	2/06/2816
par	SDP/ES	

DIFFUSION

destinataire	Nb
ADEME	1
AE/DP/K	1
CG/COM	1
DEAL	1
ESA/K	1
IRD	1
MAIRIE DE KOUROU	1
MAIRIE DE SINNAMARY	1
ONF	1
ORA GUYANE	1
SDP/ES	1
S.P.P.P.I.	1

Nombre total d'exemplaires : 12

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 2/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

REPERTOIRE DES MODIFICATIONS

Ed/Rév	Date	Pages Modifiées	Objet de la modification
01/00	04/04/2016	TOUTES	CREATION / CHRETIEN A.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 3/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

SOMMAIRE

1.	Ol	BJET – DOMAINE D'APPLICATION	. 4
2.	D	OCUMENTS DE REFERENCE	. 5
2	2.2.	DOCUMENTS APPLICABLES	5
3.	DI	EFINITIONS ET SIGLES	. 6
	3.2.	DEFINITIONS	
		RAPPELS CONCERNANT LE PLAN DE MESURES ENVIRONNEMENT ARIANE 5 DL 228	. 8
5.		DCALISATION DES POINTS DE MESURES	
		LOCALISATION DES POINTS D'ECHANTILLONNAGE POUR LE CHAMP PROCHE	
6.	LE	ES CONDITIONS METEOROLOGIQUES	10
6	6.2. 6.3.	SIMULATION SARRIM A PARTIR DE DONNEES PREVISIONNELLES	14 15
7		SUIVI DES RETOMBEES CHIMIQUES GAZEUSES ET PARTICULAIRES EN CHAMPS ROCHE, MOYEN ET LOINTAIN	
7	7.2. 7.2 7.2	OBJECTIF DES MESURES	19 20 21
8.	M	ESURE EN CONTINU DE LA POLLUTION GAZEUSE EN ACIDE CHLORHYDRIQUE	23
8	3.2.	OBJECTIF DES MESURES	23
9.		CONCLUSIONS GENERALES SUR LE SUIVI DE L'IMPACT SUR L'ENVIRONNEMENT U LANCEUR ARIANE 5 VOL 228	
		. ANNEXE 1 - RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE 5 DL A228 REALISE PAR CI/ESQS (DOCUMENT DE 13 PAGES)	25

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 4/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

1. OBJET - DOMAINE D'APPLICATION

Ce document a pour objet de présenter les résultats des mesures d'impact sur l'environnement réalisées lors du lancement d'Ariane 5 qui transportait le satellite INTELSAT-29E. Le vol Ariane 228 a eu lieu le 27 janvier 2016 à 20 heures 20 minutes en heure locale, soit à 23 heures 20 minutes, en temps universel.

Ce document est élaboré pour répondre aux objectifs suivants :

- se conformer aux prescriptions de l'arrêté préfectoral d'autorisation d'exploiter l'Ensemble de Lancement Ariane numéro 3 (ELA3) [DA1],
- confirmer et enrichir les résultats obtenus lors des essais au banc et lors des lancements Ariane 5,
- confirmer les conclusions inscrites dans l'étude d'impact réalisée dans le cadre de la constitution du Dossier de Demande d'Autorisation d'Exploiter l'Ensemble de Lancement Ariane n°3.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 5/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

2. DOCUMENTS DE REFERENCE

2.1. Documents applicables

[DA1] Arrêté Numéro 1632/1D/1B/ENV du 24 juillet 2006 autorisant la Société Arianespace, sise boulevard de l'Europe - BP177- 91000 Evry à exploiter l'ensemble de lancement Ariane (ELA), sur la commune de Kourou

[DA2] OA5-PCO-83-7376-CNES – Préparation du plan de mesures environnement Ariane 5.

[DA3] CSG-ID-S3X-495-SEER - Description et exploitation des plans de mesures Ariane 5 et des mesures environnement.

2.2. Documents de référence

[DR1] CG/SDP/ES/N°16-228 – Plan de mesures Environnement Ariane 5, Vega et Soyuz – Centre Spatial Guyanais.

[DR2] Rapport final du groupe d'experts IRD, CNRS, INRA – Impacts des activités futures d'Ariane 5 sur l'environnement humain et naturel – Contrat de consultance IRD 9086-01/CNES/2129 – Janvier 2003.

[DR3] INERIS DRC-02-37656-AIRE n°656b-MRa-CFe : Aide à la définition d'une stratégie de surveillance de la qualité de l'air dans les zones habitées autour du CSG – DRIRE Antilles – Guyane – Décembre 2002.

[DR4] CG/SDP/ES/2006/N°1263 - Note relative au plan de mesures Environnement Ariane 5.

[DR5] CG/SDP/ES/2009/N°946 - Note relative à l'utilisation des prévisions CEP pour la mise en place des capteurs du plan de mesures Environnement Ariane 5.

2.3. Gestionnaire technique du document

Le service SDP/ES (Environnement et Sauvegarde Sol) est le gestionnaire technique de ce document.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 6/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

3. DEFINITIONS ET SIGLES

3.1. Définitions

Sans objet

3.2. Sigles

 Al_2O_3 : Alumine

Al³⁺ : Ion Aluminium

AFNOR : Association Française de Normalisation

ARTA : Accompagnement de Recherche et de Technologie Ariane (Programme d')

BAF : Bâtiment d'Assemblage Final

BCS : Bureau de coordination Sauvegarde

BLA : Base de Lancement Ariane

Ca : Calcium

Cl : Ion Chlorure

Cl : Contrat Industriel

CL : Champ Lointain

CMCK : Centre Médico-Chirurgical de Kourou CNES : Centre National d'Etudes Spatiales

CODEX : Collecte de Données Environnement eXtérieur du CSG (Réseau de)

CP : Champ Proche
CT : Centre Technique

CSG : Centre Spatial Guyanais

dB : Décibel

DBO₅ : Demande Biologique en Oxygène sur 5 jours

DCO : Demande Chimique en Oxygène
ELA : Ensemble de Lancement ARIANE
EAP : Etage d'Accélération à Poudre
EPC : Etage Principal Cryogénique
EPS : Etage à Propergol Stockable
ESQS : Europe Spatiale Qualité Sécurité
GPS : Système de Positionnement Global

H₂ : Dihydrogène

HC : Hydrocarbures imbrûlésHCI : Acide Chlorhydrique

CENTRE SPATIAL GUYANAIS

Réf. : CG/SDP/ES/N°16 - 345

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 7/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

ICPE : Installation Classée pour la Protection de l'Environnement INERIS : Institut Nationale de l'Environnement Industriel et des Risques

IRD : Institut de Recherche et de Développement

K : Potassium

LD : Limite de Détection LH₂ : Dihydrogène Liquide

MEST : Matières En Suspension Totales

Mg : Magnésium

MMH : Mono Méthyl Hydrazine
NaCl : Chlorure de Sodium

N₂H₄ : Hydrazine

N₂O₄ : Peroxyde d'Azote
NO₂ : Dioxyde d'Azote
NO_x : Oxyde d'Azote

pH : Potentiel Hydrogène

ppb : Partie par milliard en volume (10-9), soit 1 mm³/m³

ppm : Partie par million RN1 : Route Nationale 1

SARRIM: « Stratified Atmosphere Release of Rockets Impact Model »

SPM : « Single Point Monitor »

UDMH : Unsymetrical Di MethylHydrazine (Diméthyl hydrazine asymétrique)

VLI : Vitesse Limite d'Impact

VTR : Valeur Toxicologique de Référence

ZL3 : Zone de Lancement n°3ZP : Zone de Préparation

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 8/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

4. RAPPELS CONCERNANT LE PLAN DE MESURES ENVIRONNEMENT ARIANE 5 Vol 228

Le plan de mesures environnement permet de quantifier et de surveiller les retombées en alumine et en acide chlorhydrique issues du 1^{er} étage d'Ariane (2 EAP constitués de 240 tonnes de propergol solide chacun, soit 480 tonnes au total).

Pour rappel, les domaines couverts par ce plan de mesures Ariane 5 Vol 228 [DR1] sont les suivants :

- Mesurer, en temps réel et en différents lieux (villes de Kourou, de Sinnamary, le Centre Technique du CSG et aux sites d'observation des lancements), les concentrations atmosphériques en gaz chlorhydrique, en dioxyde d'azote (NO₂) et en produits hydrazinés par l'intermédiaire d'analyseurs de type SPM (SPM-Honeywell); ces derniers constituant le réseau CODEX. Les composés suivis ne sont émis qu'en cas de fonctionnement dégradé (accident) du lanceur.
- Mesurer les concentrations en champs proche, moyen et lointain, des retombées chimiques particulaires en alumine et en acide chlorhydrique (ou chlorure d'hydrogène) ainsi que les retombées chimiques gazeuses en gaz chlorhydrique.

Cette démarche permettra également de réaliser une corrélation avec les résultats trouvés avec un logiciel de modélisation nommé « Stratified Atmosphere Release of Rockets Impact Model » (SARRIM).

Note:

La mise en place et le retrait du dispositif de suivi de la qualité de l'air et l'activation du réseau CODEX (SPM-Honeywell) ont été réalisés par le CI/ESQS/ES. Pour rappel, les « SPM-Honeywell » sont entretenus et étalonnés par le laboratoire de chimie du CSG (CI/SNECMA).

Pour rappel, l'évaluation de la qualité (et ainsi la conformité) des eaux des carneaux de la ZL3 avant rejet dans le milieu naturel est réalisée par l'établissement Arianespace.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 9/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

5. LOCALISATION DES POINTS DE MESURES

La localisation des points de mesures et leur distance par rapport à la ZL3 sont présentées au paragraphe 3 de l'Annexe 1 du présent document.

<u>Tableau 1</u> : Récapitulatif de l'implantation des capteurs de mesure.

		EMPLACEMENT	DISTANCE ZL3 (m)	SPM- Honeywell
Α -	СРХ	10 points en champ proche (CP)	Confer le <i>paragraph</i>	o 2 do l'Annovo 1
R	CLX	35 points en champ lointain (CL)	Conier le paragraph	e 3 de l'Allilexe I

Le détail des instruments mis en place est présenté au paragraphe 2 de l'Annexe 1.

Au total, cette partie du plan de mesures environnement du Vol A228 représente cinquante-sept capteurs répartis selon les équipements suivants :

- 45 bacs à eau, (chaque bac reposant à 1,5 m de hauteur sur un trépied),
- 4 SPM-Honeywell mobiles (HCl en continu),
- 8 SPM-Honeywell fixes, chacun comprenant :
 - o 1 SPM pour HCI
 - 1 SPM pour l'hydrazine
 - o 1 SPM pour le NO₂.

5.1. Localisation des points d'échantillonnage pour le champ proche

Pour le lancement Ariane 5 Vol A228, ont été installés :

- sur 10 sites: des bacs à eau pour le suivi des retombées chimiques et particulaires du nuage de combustion d'Ariane 5,
- 1 SPM-Honeywell mobile (HCl en continu)

5.2. Localisation des points de mesures pour les champs moyen et lointain

En champs moyen et lointain, on dénombre :

- sur 35 sites: des bacs à eau pour le suivi des retombées chimiques et particulaires du nuage de combustion d'Ariane 5,
- 3 SPM-Honeywell mobiles (HCl en continu).

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 10/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

6. LES CONDITIONS METEOROLOGIQUES

La localisation du nuage de combustion d'Ariane 5 peut varier à chaque lancement. Cette localisation ne peut être connue à l'avance du fait de la spécificité de la climatologie locale.

Afin d'optimiser l'emplacement des capteurs sur la trajectoire la plus probable du nuage, un radiosondage (réalisé au plus proche du H0) ainsi qu'une prévision météorologique (réalisée pour une échéance proche du H0) ont été utilisés.

Au moyen de SARRIM, des modélisations des conditions météorologiques du jour du lancement ont été effectuées telles que :

- Les résultats de simulation obtenus à partir des données météorologiques prévisionnelles (CEP ou ARPEGE) ont permis de <u>choisir l'option de pose</u> des capteurs,
- Les résultats de simulation obtenus à partir du radiosondage effectué en chronologie positive (hauteur de stabilisation, déplacement du nuage, etc.) pourront être corrélés aux valeurs de terrain (présentées aux paragraphes 6 et 7 du présent document).

La comparaison des résultats issus de ces deux modélisations permet d'apprécier l'efficacité du modèle et d'attester sa cohérence avec la réalité du terrain.

6.1. Simulation SARRIM à partir de données prévisionnelles

Les données d'entrée nécessaires à la simulation sont les suivantes :

- Les caractéristiques du lanceur,
- La position géographique de la zone de lancement (latitude, longitude),
- Les données météorologiques prévisionnelles issues de CEP modèle prévisionnel de profils thermodynamiques – confer la note),
- etc

<u>Nota</u>: CEP est un modèle numérique c'est-à-dire un programme informatique qui modélise l'évolution de l'atmosphère avec un maillage (spatial et temporel) donné. Les résultats fournis par ce modèle permettent de prévoir le temps (conditions météorologiques) qu'il devrait faire pour les heures, jours ou semaines qui viennent.

Les résultats de la simulation sont récapitulés dans le tableau de la page suivante.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 11/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

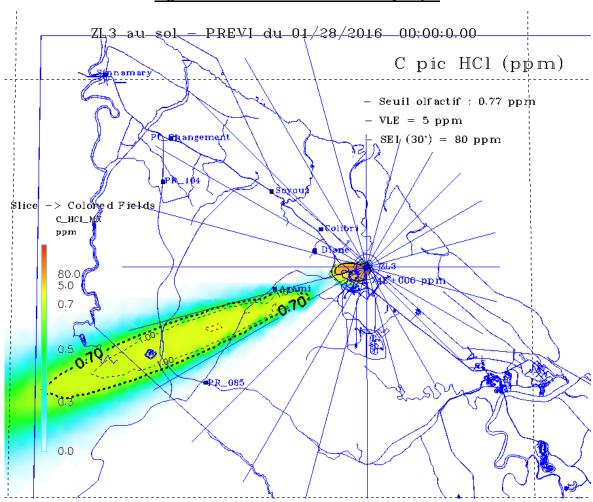
5 VOL A228 DU 27 JANVIER 2016 À 20h20

<u>Tableau 2</u>: Synthèse des résultats obtenus suite à la modélisation SARRIM à partir des données prévisionnelles CEP (2C280116.txt).

HAUTEUR DE STABILISATION DU NUAGE (m)	1078		
BASSES COUCHES (0 → HAUTEUR DE STABILISATION)			
- Vitesse moyenne des vents (m/s)	8,0		
- Direction moyenne des vents (°)	69		
⇒ Les vents sont orientés vers	Agami		
HAUTES COUCHES (HAUTEUR DE STABILISATION → 4000 M)			
- Vitesse moyenne des vents (m/s)	6,7		
- Direction moyenne des vents (°)	88		
⇒ Les vents sont orientés vers	Agami		

Les Figures Erreur! Référence non valide pour un signet. et Figure 2 présentent la prévision des directions du nuage de combustion au H0.

Ed/Rév : 01/00 Classe : GP


Date : 25/05/2016

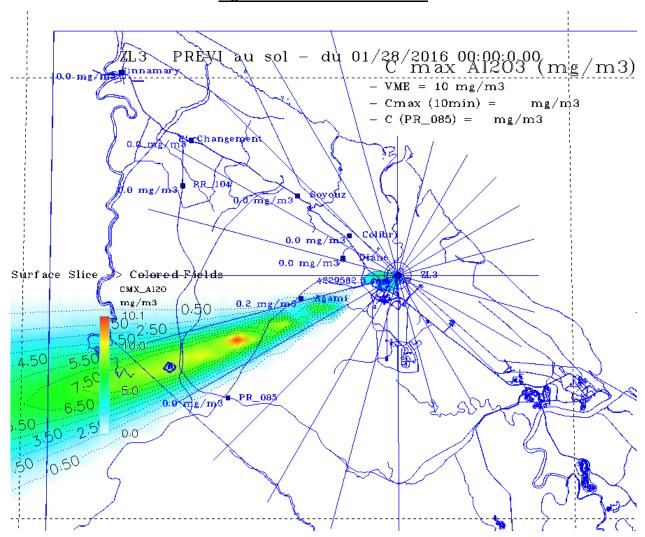
Page : 12/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

Figure 1 : Retombées en acide chlorhydrique

Ed/Rév : 01/00 Classe : GP


Date : 25/05/2016

Page : 13/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

Figure 2 : Retombées en alumine

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 14/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

6.2. Données brutes du radiosondage 4R270116

Le jour du lancement, à H0 + 26 minutes, un radiosondage (RS) spécifique a été effectué (**référence 4R270116.txt**) du 27 janvier 2016

Sur trois cent vingt-cinq couches distinctes, le RS donne des informations tous les cent mètres et permet ainsi d'effectuer une simulation avec les paramètres météorologiques les plus représentatifs du H0.

<u>Tableau 3</u>: Données météorologiques issues du radiosondage 4R270116.txt pour les couches atmosphériques représentatives.

ALTITUDE (mètres)	PRESSION (mb)	VITESSE DU VENT (m/s)	VENT EN PROVENANCE (°)	TEMPERATURE (°C)	HUMIDITE (%)
12	1012,3	3,0	60	26,1	81,0
100	1002,3	6,1	67	25,8	72,9
500	957,7	8,3	61	22,3	85,0
1000	904,0	8,4	86	19,2	76,1
1500	852,7	6,5	86	15,9	81,1
2000	803,8	7,5	88	12,5	83,5
2500	757,4	10,4	68	14,0	24,3
3000	713,7	4,7	155	12,3	46,9
3500	672,1	0,8	196	8,9	30,9
4000	632,6	6,9	35	7,1	5,6

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 15/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

6.3. Simulation SARRIM à partir du radiosondage

Les données d'entrée nécessaires à la simulation sont les suivantes :

- Les caractéristiques du lanceur,
- La position géographique de la zone de lancement (latitude, longitude),
- Les données météorologiques recueillies à l'aide d'un radiosondage,
- etc.

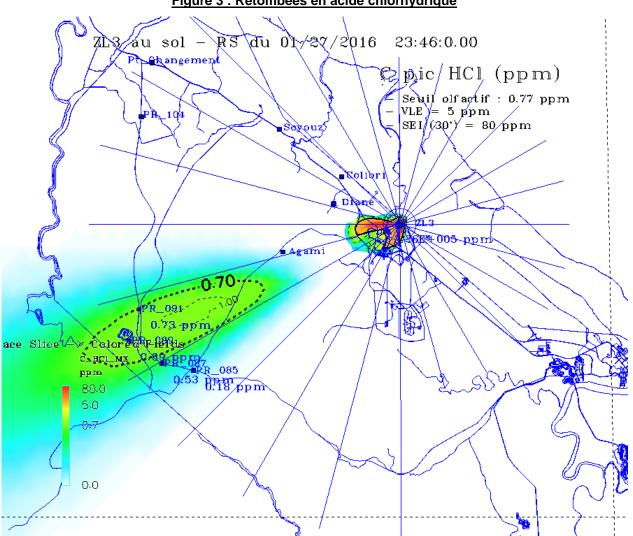
Au moyen des données issues de la modélisation SARRIM, la hauteur à laquelle le nuage de combustion se stabilise ainsi que la direction et la vitesse qu'il prend dans les basses et les hautes couches de l'atmosphère sont déterminées. Les résultats sont synthétisés dans le tableau cidessous.

<u>Tableau 4</u> : Synthèse des résultats obtenus suite à la modélisation SARRIM à partir du radiosondage.

HAUTEUR DE STABILISATION DU NUAGE (m)	1210			
BASSES COUCHES DE L'ATMOSPHERE (pour une altitude allant du sol jusqu'à la hauteur de stabilisation)				
- Vitesse moyenne des vents (m/s)	7.8			
- Direction moyenne des vents (°)	70			
⇒ Les vents sont orientés vers	Agami			
HAUTES COUCHES DE L'ATMOSPHERE (pour une altitude allant de la hauteur de stabilisation jusqu'à 4000 m)				
- Vitesse moyenne des vents (m/s)	6.0			
- Direction moyenne des vents (°)	107			
⇒ Les vents sont orientés vers	Diane			

Les Figures Figure 3 et Figure 4 ci-après présentent les directions prises par le nuage de combustion au H0 + 26 minutes.

Ed/Rév : 01/00 Classe : GP


Date : 25/05/2016

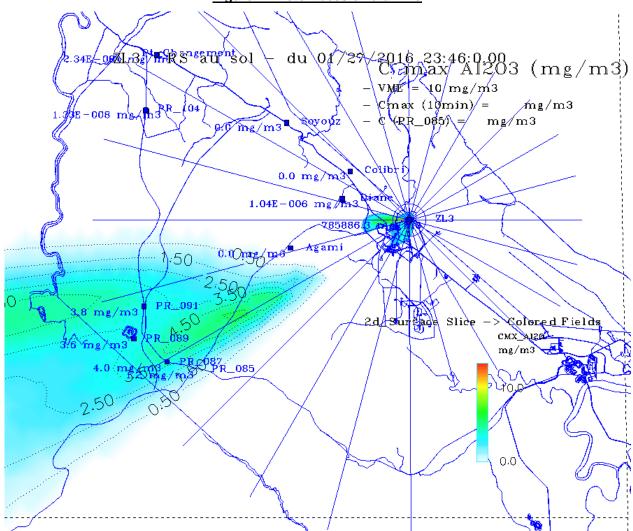
Page : 16/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

Figure 3 : Retombées en acide chlorhydrique

Ed/Rév : 01/00 Classe : GP


Date : 25/05/2016

Page : 17/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

Figure 4 : Retombées en alumine

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 18/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

6.4. Comparaison des résultats des simulations réalisées à partir du radiosondage et des données CEP

L'optimisation de l'emplacement des capteurs en champ lointain a été réalisée au moyen de la simulation SARRIM effectuée avec les données prévisionnelles CEP pour le J0 à H0. Un écart non significatif entre la direction calculée par SARRIM avec les données CEP et celle prise par le radiosondage H0 + 26 min est observé (écart de 1 %).

Pour rappel, les capteurs ont été implantés suivant la situation « **Agami** », à savoir Ouest /Nord–Ouest (confer le *paragraphe 3. de l'Annexe I du présent document*).

Malgré l'écart observé (écart de 1%) sur la direction du nuage des deux modélisations, les capteurs ont correctement été implantés.

Ces derniers ont tous été soumis aux retombées provenant du nuage de combustion d'Ariane 5.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 19/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

7. SUIVI DES RETOMBEES CHIMIQUES GAZEUSES ET PARTICULAIRES EN CHAMPS PROCHE, MOYEN ET LOINTAIN

7.1. Objectif des mesures

Les mesures des retombées chimiques gazeuses et particulaires ont pour objectif d'évaluer les retombées issues de la combustion des EAP lors des lancements Ariane 5.

Pour cela, le dispositif mis en œuvre a pour but de mesurer les retombées sédimentables réalisées au moyen de quarante-cinq pièges à eau disposés à 1,50 mètre de hauteur (conformément à la norme AFNOR NF X 43-006).

Les paramètres suivis sont :

- ✓ le pH (en unité pH),
- ✓ la conductivité (en µS/cm à 25°C),
- ✓ les concentrations en ions chlorure (exprimés en mg/L puis en mg/m²),
- ✓ les concentrations en aluminium dissous, particulaire et total (exprimés en mg/L puis en mg/m²).

Un rappel sur les limites réglementaires de toxicité des principaux produits émis par le lanceur Ariane 5 est fait au *paragraphe 7 de l'Annexe 1* du présent document.

7.2. Résultats des mesures

Tous les résultats bruts sont synthétisés au paragraphe 4 de l'Annexe 1 du présent document.

Remarque: Durant ces 24 heures d'exposition, 3,4 mm de pluie ont été enregistrés. En conséquence du fort ensoleillement durant le temps d'exposition, le volume moyen

des échantillons a diminué (volume moyen recueilli 442 ml au lieu de 500mL).

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 20/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

7.2.1. Analyse des retombées en alumine particulaire sédimentables

<u>Tableau 5</u>: Points de mesure présentant des concentrations maximales en champ proche et en champ lointain

	ALUMINE PARTICULAIRE		
	Concentration Maximale (mg/m²)	Point de mesure	Distance de la ZL3 (m)
Champ proche	86,83	CP01 : Chemin de ronde ZL3 - Intersection entre zone 49 et 50	362
Champ lointain	4,31	CL09 : Portail Piste Agami	2935,2

Remarques:

- Les concentrations mesurées en champ proche sont nettement supérieures à celles quantifiées en champs moyen et lointain. Par ailleurs, les concentrations les plus significatives, au-delà du pic enregistré au point CP01, ont été détectées sur les points CP03 (17,89 mg/m², implanté à 277 mètres et CP07 (13,84 mg/m², implanté à 1079 mètres). Pour les points CP 08 à CP 10 les teneurs restent non détectables.
- De plus, il est intéressant de souligner que les valeurs en alumine enregistrées en champ lointain ne sont pas représentatives de la trace du nuage d'Ariane 5. Ainsi, on peut conclure que les résultats sont identiques et comparables au bruit de fond naturel ambiant.
- Le point CL16, qui présente une forte concentration (15,65 mg/m²), n'a pas été pris en compte dans le tableau ci-dessus. Cette valeur est à corréler avec le soulèvement massif de poussières au passage des bus sur la piste Agami.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 21/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

7.2.2. Analyse des retombées chimiques gazeuses et particulaires d'acide chlorhydrique

<u>Tableau 6</u> : Points de mesure présentant des concentrations maximales en champ proche et en champ lointain

	IONS CHLORURES		
	Concentration Maximale (mg/m²)	Point de mesure	Distance de la ZL3 (m)
Champ proche	2722,74	CP01 : Chemin de ronde ZL3 - Intersection entre zone 49 et 50	362
Champ lointain	145,93	CL 28 : Sur RN1 direction Sinnamary 2 km après carrefour piste Agami soit PK 87,1 de la RN1	17022,9

<u>Tableau 7</u>: Points de mesure présentant des valeurs maximales en champ proche et en champ lointain

	PH		
	Acidité maximale (unité pH)	Point de mesure	Distance de la ZL3 (m)
Champ proche	2,55	CP 03 : Chemin de ronde ZL3 - Intersection entre zone 49 et 48	277
Champ lointain	4,85 CL 20 : Piste Agami - PK10 après portail		10583,3
		CONDUCTIVITE	
	Maximum (μS/cm)	Point de mesure	Distance de la ZL3 (m)
Champ proche	1311,0	CP 03 : Chemin de ronde ZL3 - Intersection entre zone 49 et 48	277
Champ lointain	28,0	CL 28 : Sur RN1 direction Sinnamary 2 km après carrefour piste Agami soit PK 87,1 de la RN1	17022,9

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 22/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

Remarques:

 Tout comme l'alumine, les concentrations en ions chlorures sont élevées en champ proche, notamment dans l'axe des carneaux de la ZL3 (points CP 01 implanté à 362 mètres, CP 02 implanté à 236 mètres, CP03 à 277 mètres et CP04 à 445 mètres).

- D'autre part, les concentrations en ions chlorures sont cohérentes aux valeurs de pH et de conductivités mesurées. En effet, plus les concentrations en ions chlorures sont élevées, plus le pH est faible et plus la conductivité est élevée.
- Ainsi, les mesures mettent en évidence un impact des retombées chimiques en acide chlorhydrique uniquement en champ proche. Au-delà, les valeurs mesurées constituent le bruit de fond ambiant.
- La forte concentration en chlorures sur les points CL 01 (implanté à Kourou sur la station météo Isabelle) et CL02 (Implanté à Kourou hôtel des roches) sont dues aux aérosols marins. L'influence de ces aérosols est variable car l'intensité de la source de particules marines est directement liée à la force du vent à la surface de la mer. Ces dépôts peuvent donc être plus ou moins importants selon les variations saisonnières de l'intensité du vent mais aussi de la salinité de l'eau de mer. Il est à noter que cette influence reste faible au CSG, quand il ne pleut pas. Cependant l'essentiel des capteurs positionnés près de la côte restent influencés par l'air marin et c'est pourquoi ces capteurs enregistrent régulièrement des pics de concentrations de chlorures et conductivité électrique.
- La très forte concentration en chlorure au Débarcadère des lles à Kourou (17,65 mg/L au CL03) est incohérente avec les valeurs soumises aux aérosols marins. On en déduit une possible contamination de l'échantillon recueilli. A ce titre, cette valeur n'a pas été prise en compte dans le tableau des résultats ci-dessus.

7.3. Conclusions sur les retombées chimiques gazeuses et particulaires

Les mesures mettent en évidence un impact des retombées chimiques en acide chlorhydrique et en alumine uniquement en champ proche. Au-delà, les valeurs quantifiées restent représentatives du bruit de fond ambiant, ou inférieures aux seuils de quantification.

Une comparaison entre les résultats des simulations SARRIM réalisées au moyen des données prévisionnelles CEP et des radiosondages et les données mesurées sur le terrain a été effectuée. Elle met en évidence que :

- les données CEP prévoyaient que le nuage se dirigerait dans une direction de 69°,
- le radiosondage montrait une direction du vent de 70°, soit une différence de 1%
- les concentrations relevées les plus fortes se trouvaient dans une direction de 69°.

Ainsi, on observe un écart non significatif entre la simulation faite à partir des données prévisionnelles CEP et les mesures de terrain.

L'utilisation des données prévisionnelles reste donc le moyen le mieux adapté pour optimiser l'implantation des capteurs environnement pour les lancements Ariane 5.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 23/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

8. MESURE EN CONTINU DE LA POLLUTION GAZEUSE EN ACIDE CHLORHYDRIQUE

8.1. Objectif des mesures

Ces mesures ont pour objectif de suivre en temps réel :

- les concentrations en gaz chlorhydrique en situation nominale de lancement
- les concentrations en gaz chlorhydrique, en dioxyde d'azote (NO₂) et des produits hydrazinés en situation dégradée

Les détecteurs de type SPM (Single Point Monitor de type « SPM-Honeywell ») du réseau CODEX sont implantés sur les lieux fixes suivants :

- dans la ville Kourou au niveau :
 - o du local annexe du club de bridge de l'Hôtel des Roches
 - de la toiture du bâtiment des urgences du Centre Médico-Chirurgical de Kourou (CMCK)
 - o de l'embarcadère des îles du Salut au Vieux-Bourg (cabanon en bois)
 - o de la station météo Isabelle de la plage de la Cocoteraie (cabanon en bois)
- dans la ville de Sinnamary au niveau de la Gendarmerie (abri en bois)
- au Centre Technique du CSG, dans une annexe au bâtiment « électromécanique »
- sur les sites d'observation Agami (mobil home) et Toucan (cabanon en bois)

Les quatre unités de détecteurs mobiles sont mises en place sur des sites dont la localisation est optimisée par simulation avec le logiciel de dispersion atmosphérique SARRIM.

La retransmission des données en temps réel se fait à l'aide de balises par voie hertzienne et filaire vers un poste informatique au Bureau de Coordination Sauvegarde (BCS).

8.2. Résultats des mesures

Sur l'ensemble des systèmes détecteurs du réseau de Collecte de Données Environnement extérieur du CSG (CODEX), composé de vingt-quatre systèmes CODEX détecteurs fixes et quatre systèmes CODEX mobiles,

Aucune pollution n'a été détectée par les SPM Honeywell mobiles disposés en CP03, CL08, CL09 et CL14.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 24/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

9. CONCLUSIONS GENERALES SUR LE SUIVI DE L'IMPACT SUR L'ENVIRONNEMENT DU LANCEUR ARIANE 5 VOL 228

La surveillance de la qualité de l'air a mis en évidence qu'une forte proportion de l'alumine et du gaz chlorhydrique retombe à proximité de la ZL3 (en champ proche).

L'implantation des capteurs environnement a été réalisée suivant l'option « **Agami**» au moyen CEP.

Les résultats du radiosondage H0 + 26 minutes, des données prévisionnelles CEP et des données de terrain sont cohérents entre eux.

Pour le Vol A228, aucune pollution d'acide chlorhydrique n'a été enregistrée.

Ed/Rév : 01/00 Classe : GP

Date : 25/05/2016

Page : 25/38

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE

5 VOL A228 DU 27 JANVIER 2016 À 20h20

10. Annexe 1 - Resultats du plan de mesures environnement Ariane 5 Vol A228 Realise par CI/ESQS (document de 13 pages)

Référence : 16.SE.RS.09

Date: 01/04/2016

Page: 1/13

RESULTATS DU PLAN DE MESURES ENVIRONNEMENT ARIANE VA 228

DIFFUSION: SDP/ES (2 exemplaires); ESQS/A; ESQS/SE/RTP

ESQS/SE/RTP

J.HERAUD

Référence: 16.SE.RS.09

Date: 01/04/2016

Page: 2/13

1. Introduction

Le vol Ariane 5 VA 228 a permis le lancement d'Intelsat 29E le 27/01/2016 à 20h20 (heure locale). Ce rapport présente l'ensemble des résultats obtenus. Il détaille :

- la description des mesures réalisées pour ce lancement ;
- la localisation des points de mesures (en champ proche et en champ lointain) ;
- les résultats des analyses faites à partir des bacs à eau;
- les résultats des détections du réseau CODEX;
- un rappel sur les limites réglementaires de toxicité des principaux produits émis par le lanceur Ariane 5.

1.1. Instrumentation

Pour ce lancement, le plan de mesures mis en œuvre était constitué de :

- en Champ proche 10 sites instrumentés* :
 - 1 SPM Honeywell,
 - 10 bacs à eau (chaque bac reposant à 1,5 m de hauteur sur un trépied),
- en Champ lointain 35 sites instrumentés :
 - 3 SPM Honeywell,
 - 35 bacs à eau (chaque bac reposant à 1,5 m de hauteur sur un trépied).

1.2. Mise en place

Le matériel (SPM Honeywell, bacs à eau) a été installé le 27/01/2016 entre 09h00 et 14h00.

1.3. Retrait des capteurs et analyseurs et envoi des analyses aux laboratoires

Les capteurs et analyseurs ont été récupérés le 28/01/2016 entre 08h30 et 11h00. Les échantillons ont été confiés à l'Institut Pasteur de Guyane le 29/01/2016 dans la matinée.

Référence : 16.SE.RS.09

Date: 01/04/2016

Page: 3/13

2. Description des mesures réalisées pour le vol Ariane VA 228

2.1. Mesures des retombées chimiques gazeuses et particulaires

Ces mesures permettent de caractériser les retombées chimiques issues de la combustion des EAP en champ proche et en champ lointain. Les retombées sédimentables (chlorure, aluminium dissous, particulaire et total), le pH et la conductivité sont mesurées à l'aide de bacs à eau.

Dix bacs ont été disposés en champ proche, sur le chemin de ronde de la ZL3 tandis que 35 bacs ont été placés en champ lointain sur Kourou, Sinnamary, la piste Agami, la RN1, le site d'observation Toucan, l'ancienne carrière Roche Nicole, le site de suivi Diane, la route de l'espace et l'ancienne RN1.

La mise en œuvre a été assurée par ESQS et les analyses ont été confiées à l'Institut Pasteur de Guyane.

2.2. Mesures en continu de la qualité de l'air

La mise en place de ce réseau de détection est une des obligations de l'Arrêté d'Autorisation d'Exploiter l'ELA 3.

24 analyseurs SPM Honeywell sont installés à poste fixe sur 8 sites localisés à Kourou, Sinnamary, le Centre Technique et les sites d'observation (Agami et Toucan).

Ce réseau mesure en temps réel la teneur en acide chlorhydrique, en peroxyde d'azote et en produits hydrazinés dans l'atmosphère.

Les données sont centralisées vers le poste CODEX implanté au BCS (Bureau de Coordination Sauvegarde) localisé au Centre Technique.

Quatre appareils supplémentaires mobiles ont été mis en service à l'occasion de ce lancement pour la mesure d'HCI:

- Le mobile 1 était placé en champ proche au point de mesures CP3,
- les mobiles 3, 4 et 5 se situaient en champ lointain (respectivement aux points CL9, CL8 et CL14).

Les seuils de détections des appareils fixes sont les suivants :

Nom	Produits	Seuils de détection	Seuil olfactif
N ₂ H ₄	Produits hydrazinés	1 à 6 ppm	1,7 ppm
N ₂ O ₄	Dioxyde d'azote	1 à 45 ppm	0,2 ppm
HCI	Acide chlorhydrique	2 à 15 ppm	0,8 ppm

Les seuils de détections des appareils mobiles sont les suivants :

Nom	Produits	Seuils de détection champ proche	Seuils de détection champ Iointain
HCI	Acide chlorhydrique	2 à 15 ppm	28 à 1200 ppb

L'étalonnage et l'exploitation de ces mesures sont assurés par le service SDO/SC.

Référence : 16.SE.RS.09

Date: 01/04/2016

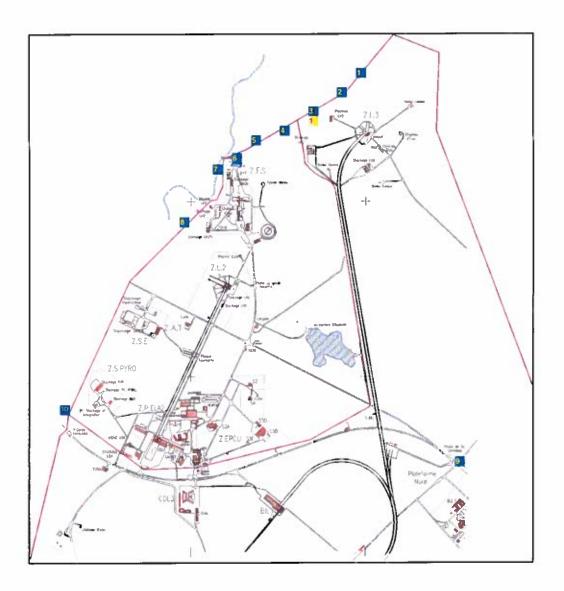
Page : 4/13

3. Localisation des points de mesures - champ proche (CP) et champ lointain (CL)

Suite aux résultats du dernier radiosondage, les bacs à eau ont été placés suivant l'option A = situation « Agami ».

3.1. Champ proche

Code	Lieux	Distance ZL3 (m)	(m)	Y (m)	Bac à eau	SPM Honeywell
CP1	Chemin de ronde ZL3 - Intersection entre zone 49 et 50	362	303963	579859	Oui	-
CP2	Chemin de ronde ZL3 - milieu zone 49	236	303891	579708	Oui	-
СРЗ	Chemin de ronde ZL3 - Intersection entre zone 48 et 49	277	303788	579678	Oui	SPM Honeywell n° 1
CP4	Chemin de ronde ZL3 - Intersection entre zone 47 et 48	445	303557	579544	Oui	_
CP5	Chemin de ronde ZL3 Milleu de la zone 47	533	303467	579496	Oui	
CP6	Chemin de ronde ZL3 - Milieu de la zone 46	832	303185	579331	Oui	- 8
CP7	Chemin de ronde ELA2 - Intersection entre zone 44 et 45	1079	303027	579032	Oui	-
CP8	Chemin de ronde ELA2 - Milieu de la zone 42	1697	302595	578548	Oui	-
CP9	Orchidée	1984	304573	577600	Oui	-
CP10	Chemin de ronde ELA2 - Intersection entre zone 39 et 40	2313	302309	577921	Oui	-



Référence : 16.SE.RS.09

Date: 01/04/2016

Page : 5/13

Piège à eau (1,5m)Station mobile de mesure HCl en temps réel

Référence : 16.SE.RS.09

Date: 01/04/2016

Page : 6/13

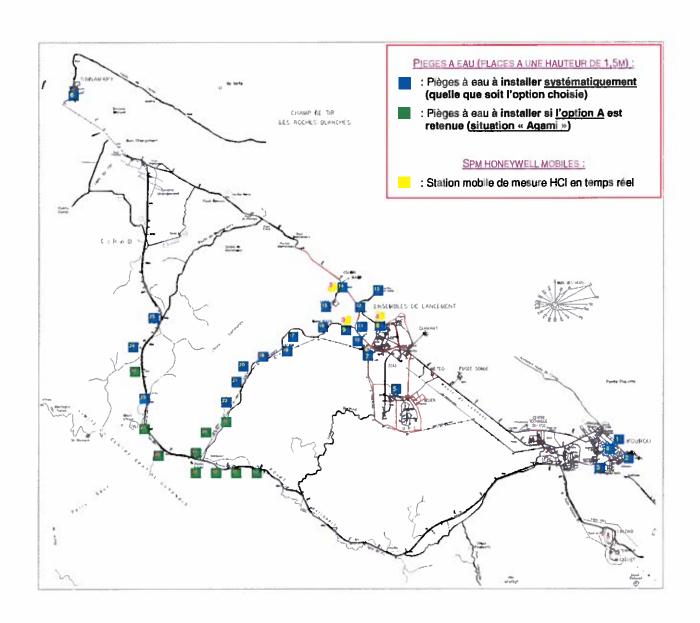
3.2. Champ lointain

Code	Lieux	Distance ZL3 (m)	(m)	Y (m)	Bac à eau	SPM Honeywell
CL1	Kourou - Station Météo Isabelle	16268,2	318148	571469	Oui	-
CL2	Kourou - Hôtel Les Roches	17851,5	319511	570662	Oui	-
CL3	Kourou - Débarcadère des lles	17152,8	317867	569403	Oui	
CL4	Kourou - CMCK	16057,6	317648	571039	Oui	
CL5	Site Toucan	5163,8	304210	574340	Oui	
CL6	Hôtel du Fleuve	23995,5	284180	593025	Oui	-
CL7	Pont Karouabo	2425,4	302023	578094	Oui	
CL8	Parking ancienne RN1	1874,1	302181	579048	Oui	SPM Honeywell n°4
CL9	Portail Piste Agami	2935,2	301089	579123	Oui	SPM Honeywell n°3
CL10	Mi chemin Karouabo - embranchement Piste Agami	2632,6	301515	578630	Oui	23.
CL11	Intersection Piste Agami - Route de l'Espace	2789,8	301248	579045	Oui	-
CL12	PK17,7 depuis Changement sur RTE ESPACE direction ELA (Embranchement Ancienne RN1)	2640,1	301502	580355	Oui	-
CL13	Chemin menant à la carrière Roche Nicole	2898,0	301359	580692	Oui	-
CL14	PK16,15 depuis Changement sur RTE ESPACE direction ELA Embranchement Diane	4005,8	300641	581681	Oui	SPM Honeywell n°5
CL15	Diane	4359,0	299915	581020	Oui	1+1
CL16	Piste Agami - PK 1,5 après portail Agami (entrée du morne Bocco)	4420,3	299584	579304	Oui	-
CL17	Piste Agami - PK4 après portail	6162,0	297886	578731	Oui	-
CL18	Site Agami	7461,5	296738	577785	Oui	-
CL19	Piste Agami - PK8 après portail	9213,1	295136	576987	Oui	-
CL20	Piste Agami - PK10 après portail	10583,3	294192	575523	Oui	-
CL21	Piste Agami - PK11 après portail	11126,3	293985	574652	Oui	-
CL22	Piste Agami - PK12 après portail	11962,8	293439	573880	Oui	-
CL23	Sur RN1 direction Sinnamary 6 km après carrefour piste Agami soit PK 91,1 de la RN1	17016,2	287856	574121	Oui	-
CL24	Sur RN1 direction Sinnamary 10 km après carrefour piste Agami soit PK 95,1 de la RN1	16276,4	287783	578110	Oui	-
CL25	Sur RN1 direction Sinnamary 12 km après carrefour piste Agami soit PK 97,1 de la RN1	15229,6	288772	579722	Oui	-
CL26	Sur RN1 direction Sinnamary 8 Km après carrefour piste Agami soit PK 93,1 de la RN1	16790,5	287573	576024	Oui	
CL27	Sur RN1 direction Sinnamary 4 km après carrefour piste Agami soit PK 89,1 de la RN1	17671,8	287906	572200	Oui	

Référence : 16.SE.RS.09

Date: 01/04/2016

Page: 7/13


Code	Lieux	Distance ZL3 (m)	(m)	Y (m)	Bac à eau	SPM Honeywell
CL28	Sur RN1 direction Sinnamary 2 km après carrefour piste Agami soit PK 87,1 de la RN1	17022,9	289348	570833	Oui	-
CL29	Embranchement Piste Agami - RN1 situé à PK 15,8 après portail	15524,6	291407	570420	Oui	· ·
CL30	Sur RN1 direction Kourou 1,5 km après carrefour piste Agami soit PK 83,6 de la RN1	14954,8	292634	569780	Oui	9
CL31	Sur RN1 direction Kourou 3 km après carrefour piste Agami soit PK 82,1 de la RN1	13184,8	295072	569797	Oui	2
CL32	Sur RN1 direction Kourou 4,5 km après carrefour piste Agami soit PK 80,6 de la RN1	12928,5	295652	569627	Oui	2.
CL33	Piste Agami - PK15 après portail	14544,5	291903	571424	Oui	ā
CL34	Piste Agami - PK14 après portail	13689,8	292382	572258	Oui	
CL35	Piste Agami - PK13 après portail	12837,2	292857	573125	Oui	

Référence : 16.SE.RS.09

Date: 01/04/2016

Page : 8/13

Référence: 16.SE.RS.09

Date: 01/04/2016

Page: 9/13

4. Mesures des retombées chimiques particulaires

Le temps d'exposition des bacs à eau a été d'environ 24H (du 27 janvier 2016 09h00 au 28 janvier 2016 11h00).

Le volume d'eau distillée initialement versé dans les bacs était de 500 ml.

Durant ces 24 heures d'exposition, 3,4 mm de pluie ont été enregistrés. En conséquence le volume moyen des échantillons a diminué (volume moyen recueilli 442 ml).

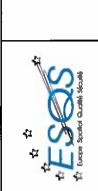
Pour ce plan de mesure, la limite de détection de l'aluminium a été fixée à 0,02mg/l, soit 0,48mg/m² pour 500ml d'eau recueillis dans les bacs de dimensions 17,4 x 12 cm.

La concentration en aluminium particulaire n'est pas mesurée mais calculée par différence entre les concentrations en aluminium total et aluminium dissous. Pour cette raison, lorsque les concentrations en Aluminium total ou dissous sont inférieures à la limite de détection (0,02mg/L), l'annotation « Non Quantifiable (n.q.)» est indiquée pour la concentration en Aluminium particulaire.

Les volumes d'eau recueillis étant différents d'un point à un autre, les concentrations surfaciques seront différentes pour une même concentration volumique.

Exemple:

- pour un volume d'eau recueilli égal à 550 ml, une concentration de 2 mg/L correspondra à une concentration surfacique de 52,7 mg/m².
- pour un volume d'eau recueilli égal à 410 ml, une concentration de 2 mg/L correspondra à une concentration surfacique égale à 39,3 mg/m².



Référence : 16.SE.RS.09 Date: 01/04/2016

Page: 10/13

4.1 Résultats d'analyse des bacs à eau « champ proche »

		A	Aluminium Dissous	ous	Alumini	Aluminium Particulaire	ire	Alum	Aluminium TOTAL		175	Chlonines			
		Concentration			Concentration		ì	Concentration			Concentration			i	The state of the s
ocalisation	Volum	E A	capté	capté dans le bac	calculée dans le volume d'eau	capté da	capté dans le bac	mesurée dans le volume d'eau	capte da	capté dans le bac	mesurée dans le volume	captès da	captès dans le bac	Ł	Conductivité
	(mm)	mg/l	ш	mg/m²	mg/I	Bm.	mg/m²	recueille mg/l	Ē.	mg/m²	deau recueillie	Đ.	mg/m		uStem
CP1	370	12.5	4.625	221,50	4.900	1,813	86,83	17,4	6,438	308,33	153.65	58,85	2722.74	2.85	0.776
CP2	410	0,575	0.236	11.29	0,292	0,120	5,73	0,867	0,355	17,02	98'6	4.04	193,59	3.85	77.0
СРЗ	390	1,128	0 440	21.07	856.0	0.374	17,89	2,086	0.814	38'86	120,14	46.86	2244.07	2.55	1311.0
CP4	380	0,051	0,019	0.93	0.038	0,014	69'0	0,089	0.034	1.62	3.07	1.17	55.94	4.25	29.0
CP5	390	0.089	0.035	1,66	0.174	0.068	3.25	0,263	0.103	4.91	3.40	1,33	63.52	4.40	24.0
CP6	430	0.077	0.033	1,59	0.146	0,063	3,01	0.223	960'0	4.59	2.36	1,01	48.60	4.60	15.0
CP7	410	0.841	0.345	16.51	0.705	0.289	13,84	1,546	0.634	30,36	17.83	7.31	350.01	3.50	158.0
CP8	425	< 0.02	< 0.009	< 0.41	b.n.			< 0.02	600'0 >	< 0.41	1.31	0.56	26.73	5.20	9.1
CP9	410	< 0.02	< 0.008	< 0.39	0.023	600'0	0,45	0.023	6000	0.45	3.27	1.34	64.25	5.65	12.0
CP10	420	< 0.02	< 0.008	< 0.40	8	,		< 0.02	< 0.008	< 0.40	1.18	0.494	23.66	5.60	6.4

Référence: 16.SE.RS.09

Date: 01/04/2016

Page: 11/13

4.2 Résultats d'analyse des bacs à eau « champ lointain »

		wite	100					Г												
		Conductivité	µS/cm	11,0	13.0	72.0	1.8	14.0		2.8	6.2	5.6	6.0	5.2	9'9	19.0	6,4	13,0	6,1	3,3
		품		5.75	5.70	5,70	6.00	5.55		9.60	99.9	5.55	5,55	5,60	5.50	6.20	58.65	5,95	5.55	5.70
		ns le bac	mg/m	45.46	57.68	431,06	38.05	61.58		6.88	23.84	21.64	21,66	25.47	27.33	27.96	20.61	28.37	30.19	10.45
Chlorures		captés dans le bac	mg	0.949	1,204	9.000	0,794	1.286		0,144	0.498	0.452	0.452	0,532	0.571	0,584	0.430	0.592	0.630	0.218
	Concentration	mesurée dans le volume	deau recueillie	2.37	2.65	17.65	1,73	2.80		0.32	1.23	1.00	1.01	1,27	1.39	1,39	1,12	1,52	1.47	0.45
	100		mg/m²	< 0.38	25.0	< 0.49	0,62	0.73		< 0.43	< 0.39	4.31	< 0.43	< 0.40	< 0.39	4.43	1.29	0.37	15,65	3.02
Aluminium TOTAL		capté dans le bac	But	800°0 >	0.012	< 0.011	0,013	0.015		600.0 >	800'0 >	060.0	< 0.009	600'0 >	< 0.008	0.092	0.027	0.008	0.327	0.063
Alum	Concentration	mesurée dans le volume d'eau	recueillie	< 0.02	0.026	< 0.02	0,028	0,033	ERSE	< 0.02	< 0.02	0,200	< 0.02	< 0.02	< 0.02	0.220	0.070	0,020	09.760	0.130
ire		s le bac	mg/m²		15'0		0,62	0.73	BAC RENVERSE		•	4.31			-	2.82	1,29	96'0	15.65	3.02
Aluminium Particulaire		capte dans le bac	- 6m	,	0.012		0.013	0.015				060.0				0.059	0.027	0.020	0.327	0.063
Aluminh	Concentration	calculée dans le volume deau	recueille	b'u	0.026	n.q.	0,028	0.033		.p.n	.p.n	0.2	-bru	-b:u	.p.n	9,14	20'0	0.02	92'0	0.13
92		capté dans le bac	mg/m*	0.38	0.44	0.49	0.44	0.44		0,43	0.39	0.43	0.43	0,40	0.39	1.61	0.37	0.37	0.41	0.45
Aluminium Dissous		capté d	mg	< 0.008	600'0 >	< 0.010	< 0.009	< 0.009		600'0 >	< 0.008	< 0.009	600'0 >	< 0.008	< 0.008	0.034	800'0 >	> 0,008	600'0 >	< 0.010
A	Concentration	mesurée dans le volume d'eau	recuerlie mg/l	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.080	< 0,02	< 0.02	< 0.02	< 0.02
		Volum	(m)	400	455	510	460	460	256 270	445	405	450	450	420	410	420	385	390	430	485
		ocalisation		CL01	CL02	CL03	CL04	CL05	CL06	CL07	CL08	CL09	CL10	CL11	CL12	CL13	CL14	CL15	CL16	CL17

Date : 01/04/2016

Référence : 16.SE.RS.09

0102/50/	113
))	le: 12
รี	Pac

233	The second	Conductività	m2/cm	5,1	7.0	11.0	6,4	10.0	2.8	6.8	11.0	4.9	5,3	28.0	14.0	20.0	22.0	14.0	15.0	15,0	12.0
	J,	Ŧ		5.55	5.05	4,85	6.75	5.70	55'5	55.5	5.55	5,55	5.50	5.95	5,50	5,45	5.40	5.55	5.50	5.50	5.60
	Ī	captés dans le bac	m/bm	20.66	27.20	40,16	90'0€	49.45	8.24	42.56	42.56	22.98	37.22	145.93	72.17	143,89	131,84	79.57	83.00	76,94	61.51
Chlorures		captés da	Bu	0.431	895'0	0.839	979'0	1,033	0,172	688'0	688.0	0,480	0.777	3.047	1,507	3.004	2,753	1.661	1,733	1,607	1.284
	Concentration	mesurée dans le volume	deau recueillie	0.92	1.18	1,75	1.28	2.03	55'0	1.59	1,59	96°0	1,57	5,49	2.74	5,18	4,55	2.84	3,18	3.06	2.47
1		capté dans le bac	'mym'	< 0.45	0.78	2.85	1.27	0,61	05.0 >	29'0	1.23	< 0.48	< 0.47	< 0.53	1.03	0.92	1.42	0.87	1.20	1,11	0.75
Aluminium TOTAL		capté da	mg	< 0.010	0.016	090'0	0.026	0,013	200.0 >	0.014	0.026	< 0.010	< 0.010	< 0.011	0.021	0.019	0.030	0.018	0.025	0.023	0.016
Alun	Concentration	mesurée dans le volume d'eau	recueille	< 0.02	0,034	0.124	0.054	0,025	< 0.02	0.025	0,046	< 0.02	< 0.02	< 0.02	0.039	0.033	0,049	0,031	0.046	0.044	0.030
aire		capté dans le bac	mg/m"	-	0.78	2,85	1.27	0.61		29'0	1.23	•		•	1,03	0,92	1,42	0.87	1,20	1,11	0.25
Aluminium Particulaire		capté da	Bm		0.016	090'0	0,026	0.013	-	0,014	0.026		,		0.021	0,019	0.030	0.018	0.025	0.023	0.005
Alumin	Concentration	calculée dans le volume d'eau	recueithe	n.q.	0.034	0,124	0.054	0,025	n.q.	0.025	0.046	n.q.	n.q.	n.q.	0.039	0,033	0,049	0,031	0,046	0.044	0,010
SD(capté dans le bac	'mg/m'	0.45	0,46	0.46	0.47	0,49	0.30	0,54	0.54	0.48	0.47	0.53	0.53	0.56	0,58	0.56	0.52	0.50	0.50
Aluminium Dissous		capte	mg	< 0.009	< 0.010	< 0.010	< 0.010	< 0.010	< 0.006	< 0.011	< 0.011	< 0.010	< 0.010	< 0.011	< 0.011	< 0.012	< 0.012	< 0.012	< 0.011	< 0.011	< 0.010
A	Concentration	mesurée dans le volume d'eau	mg/l	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
		Volum	(m)	470	480	480	490	510	315	260	260	505	495	555	550	580	605	585	545	525	520
		Localisation		CL 18	CL 19	CL20	CL21	CL22	CL23	CL24	CL25	CL26	CL27	CL28	CL29	CL30	CL31	CL32	CL33	CL34	CL35

Référence : 16.SE.RS.09

Date: 01/04/2016

Page : 13/13

5. Mesures de la qualité de l'air - Réseau CODEX

Aucune pollution n'a été détectée par les SPM Honeywell mobile disposés en CP03, CL08, CL09 et CL14.

6. Rappels sur les limites réglementaires de toxicité des principaux produits émis par le lanceur Ariane 5

VLE/VME : Valeurs admises pour les concentrations de certaines substances dangereuses dans l'atmosphère des lieux de travail (INRS/Ministère du travail).

SEL: Concentration maximale de polluant dans l'air pour un temps d'exposition donné (30 minutes) en dessous de laquelle chez la plupart des individus, on n'observe pas d'effets létaux (décès).

SEI: Concentration maximale de polluant dans l'air pour un temps d'exposition donné (30 minutes) en dessous de laquelle chez la plupart des individus, on n'observe pas d'effets irréversibles (persistance dans le temps d'une atteinte lésionnelle ou fonctionnelle, directement consécutive à une exposition en situation accidentelle).

Type de gaz	VME	VLE
Alumine (poussière)	10 mg/m ³	•
Dose Alumine en mg.s/m ³	1440000	-

Type de gaz	S.E.I. 10 mn	S.E.I. 30 mn	S.E.L. 30 mn	VLE
HCI	240 ppm 358 mg/m ³	80 ppm 90 mg/m ³	470 ppm 700 mg/m ³	5 ppm
Dose HCl en ppm.s	144000	144000	846000	

L'alumine ne présente pas de toxicité intrinsèque, par contre comme toute poussière, au-delà d'une certaine concentration dans l'air elle peut présenter des risques. Certaines valeurs ont été déterminées pour assurer la sécurité sur les lieux de travail. Pour les poussières inertes, il existe une VME (Valeur Moyenne d'Exposition des travailleurs). Cette valeur représente la concentration maximale à laquelle une personne peut être exposée sur son lieu de travail 8 heures par jour, 5 jours par semaine sans risque pour sa santé. Bien que non adaptée à l'environnement naturel, cette valeur nous donne un élément de comparaison.

La VME des poussières inertes est donc de 10mg/m³ pendant 8h, 5 jours/semaine ce qui correspond à une dose par semaine de 1440000 mg.s/m³.